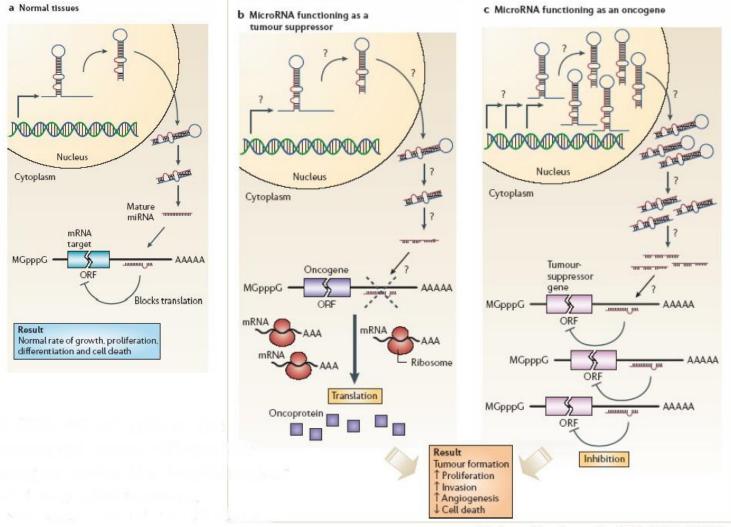


Easy to Learn Bioinformatics Analysis for MicroRNA Studies

簡單學 microRNA 生物資訊分析

Dr. Hsien-Da Huang (黃憲達) Professor and Chairman,

Institute of Bioinformatics and Systems Biology, Department of Biological Science and Technology, National Chiao Tung University, Taiwan

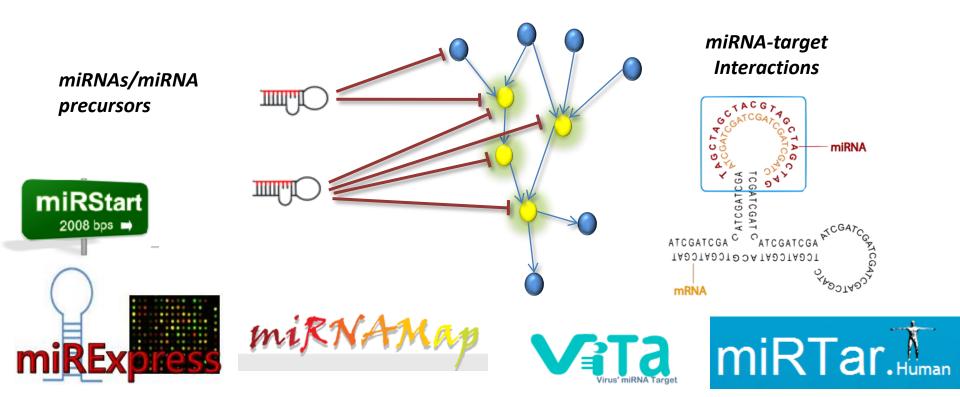

protein-coding transcripts, whereas the rest are located mostly in the introns of coding genes

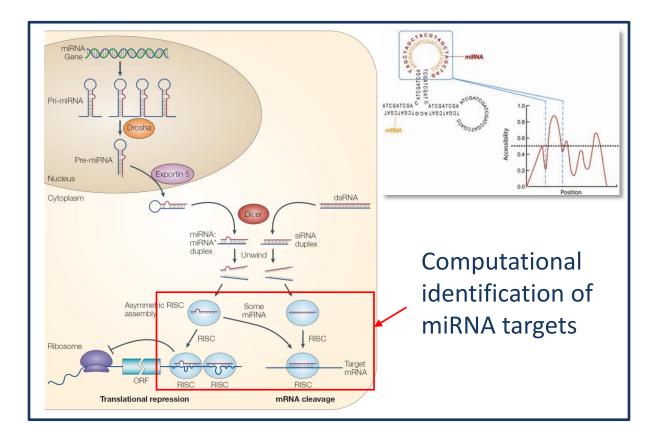
Translational repression

mRNA degradation

Nucleus

Oncomir: miRNA functions as a tumor suppressor or an oncogene


transcription **Bioinformatics Research in MicroRNA** miRNA gene -----> pri-miRNA -> pre-miRNA **Regulation: Databases and Tools** -> miRNA ----down-regulation----> target genes ПЛПП ПЛПП Transcriptional regulation miRNA Gene панн ПЛПП miRStart of miRNAs Tumor suppressor gene 2010 bps 🗖 -7 microRNA precursor **RNA** pol ↓Tumor suppressor gene expression Pri-miRNA miRNAMas Drosha (A)n Capre-miRNA Ŭ--A-U G-¢ Mature miRNA Cropping Exportin 5 Nucleus Cytoplasm dsRNA Danio Fugu rubriper Dicer miRNA: Dicing siRNA miRNA* duplex duplex Unwind TACGTA Identifying miRNA targets Asymmetric RISC miRNA Some assembly miRNA RISC RISC ATCGATCGA C ATCGATCGA Ribosome 1.0 r TABOTABOTBOATABOTABOT 0.8 Target mRNA PODIAD. mRN. Accessibility ۱S 0.6 ORF RISC RISC RISC 0.4 **Translational repression** mRNA cleavage 0.2 4 (The figure was modified from the graphic by Lin He, Nat Rev Genetics, 2004) **miREx** 0.0 Position

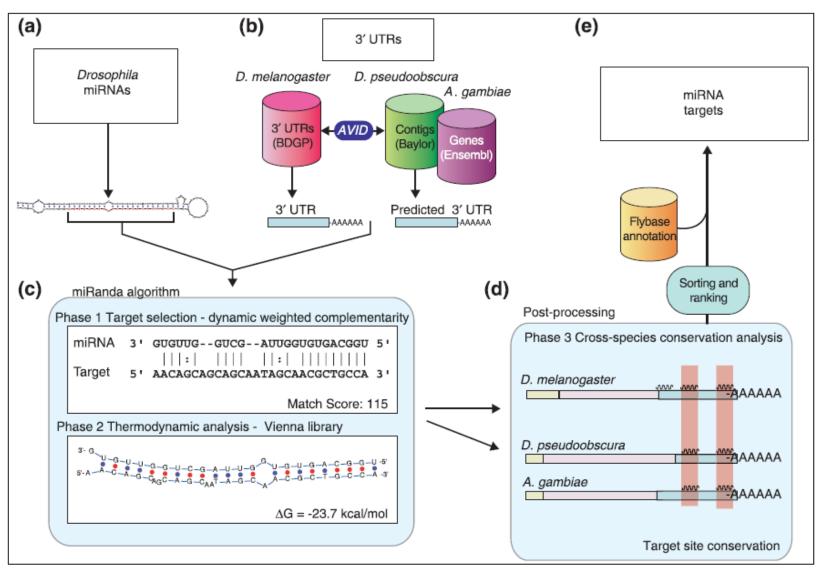

Bioinformatics Resources for MicroRNA Research

- Gene prediction and annotation:
 - Identification of miRNA genes (intergenic and intragenic miRNAs)
 - miRNAMap (NAR, 2006, 2008), miRExpress (BMC Bioinformatics, 2009)
 - Comparative analysis of miRNAs
 - RNALogo (NAR, 2009)
- Functions of miRNAs:
 - Identification of miRNA targets
 - miRNAMap (NAR, 2006, 2008), miRTarBase (NAR, 2011), miRTar (BMC Bioinformatics, 2011) and ViTa (NAR, 2009)
 - Tumor suppressors or oncogenes
- Regulation of miRNAs:
 - Transcriptional regulation of miRNA
 - miRStart (NAR, 2011)
 - Expression profiles of miRNAs
 - miRExpress (BMC Bioinformatics, 2009)

miRNA/small RNA Resources

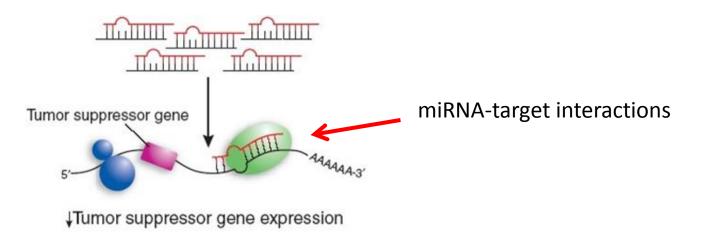
miRNA databases: miRNAMap, ViTa miRNA-target interaction database: miRTarBase Promoters of miRNAs: miRStart Tools for identifying miRNA-target interactions: miRTar, miRExpress Tools for RNA analysis: RNALogo, RegRNA, sRNAMap, RNAMST, RiboSW

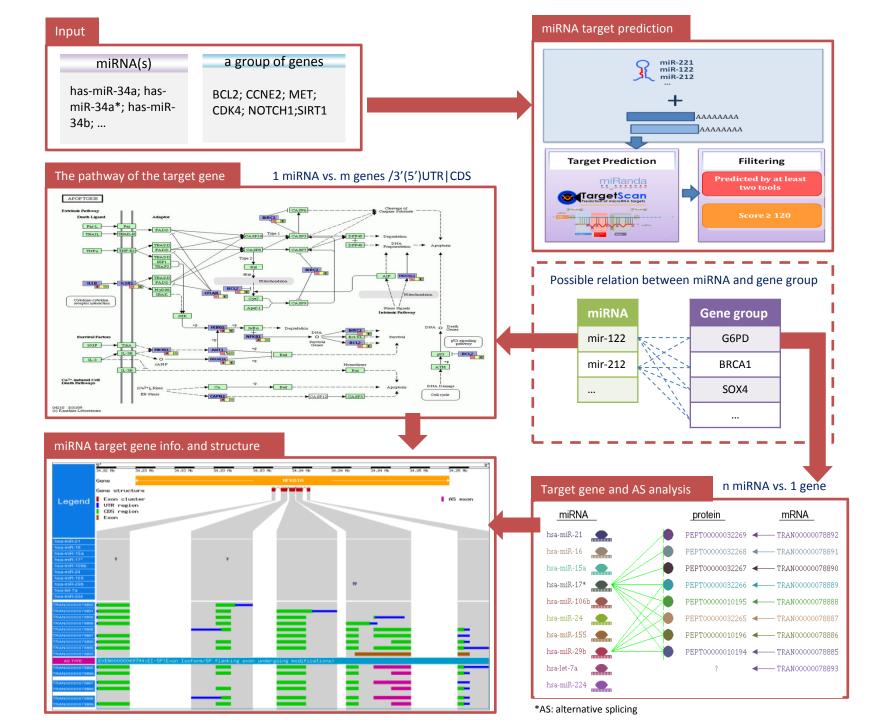
Tools for identifying miRNA targets

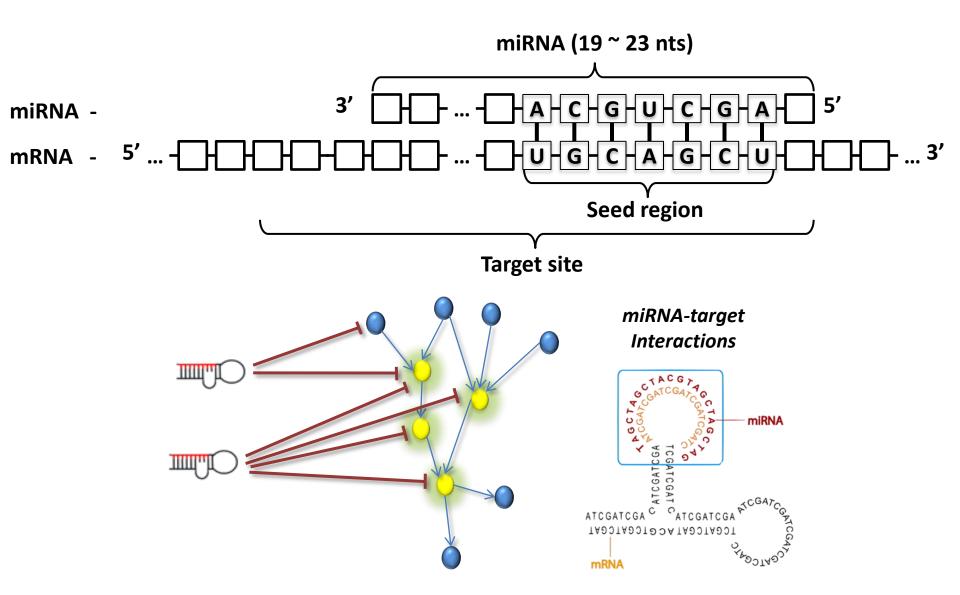

miRanda

- microRNA sequences (in 2003) (Genome Biol. 5, R1, 2003)
 - miRBase
 - 73 unique miRNA sequences
- 3'UTR sequences
 - BDGP (Berkeley *Drosophila* Genome Project)
- Looking for high-complementarity regions on the 3'UTRs.
 - dynamic programming algorithm
- Evaluate thermodynamic of potential binding sites

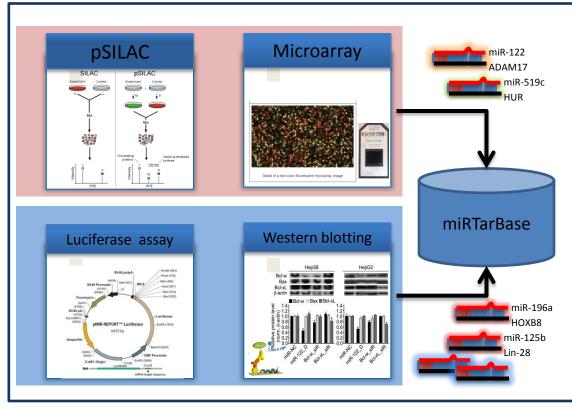
Vienna RNA folding package

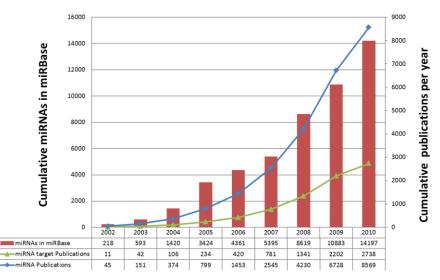

miRanda - Algorithms




miRTar provides multiple functions for identifying miRNA-target interactions

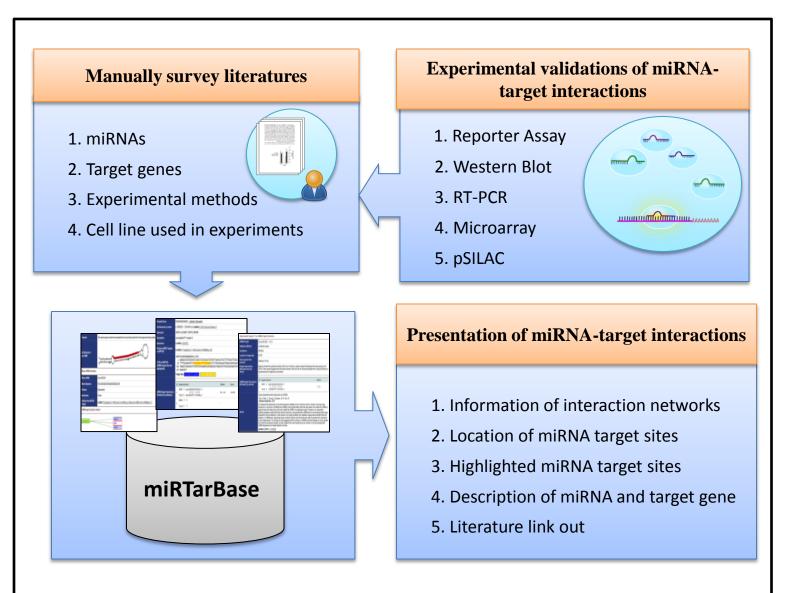
- Single miRNA to single gene (1:1)
- Single miRNA to multiple genes (1:N)
- Multiple miRNAs to single gene (N:1)
- Multiple miRNAs to multiple genes (N:N)


miRNA-target interactions (MTIs)



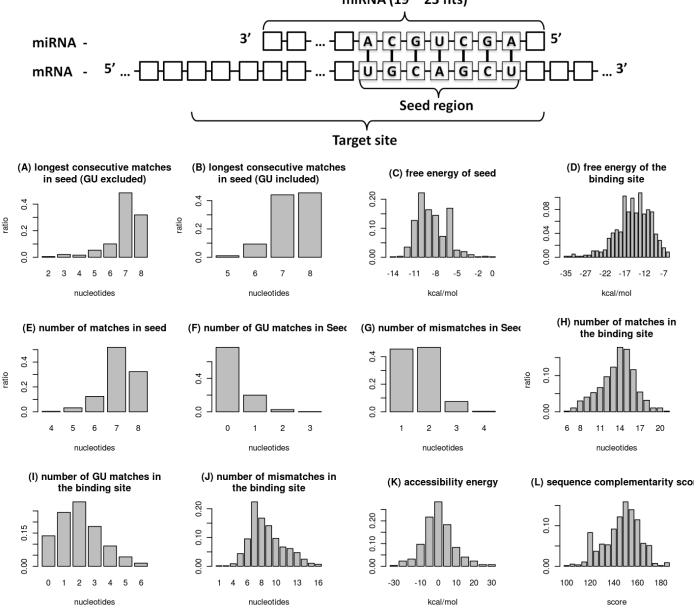
miRTarBase

a database curates experimentally validated miRNA-target interactions (NAR database issue, 2011)


http://miRTarBase.mbc.nctu.edu.tw/

- 1. By surveying literature
- 2. To collect <u>updated</u> information of miRNA
 - target interactions
- 3. <u>4270</u> entries now, will be more than 10,000 entries in 2013, expectedly
- 4. Biggest collection now
- 4. Discover miRNA-target interactions in mouse based on the extension of human miRNAtarget interaction (Evolutionary conservation)

System flow of miRTarBase

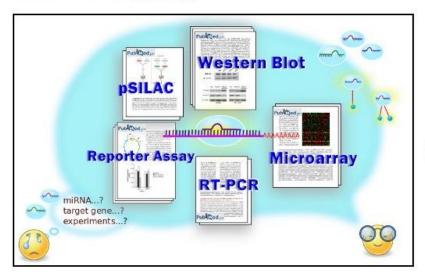


Comparison with other resources

	TarBase	miRecords	miR2Disease	miRTarBase	
Publications	RNA (2006), Nucleic Acids	Nucleic Acids Res. Database	Nucleic Acids Res. Database Issue	NAR Database Issue (2011)	
	Res. Database Issue (2009)	Issue (2009)	(2009)		Number of
Release version	V5	V1			records added
Last update	2008/6	2010/5/5	2010/06/02	2011/10/15	
Support species	Metazoa x 6 Viridiplantae Viruses	Metazoa x 11 Viruses x 2	Human	Metazoa x 8 Viridiplantae x 3 Viruses x 4	
Number of miRNAs	223	381*	179	657	+ 276
Number of target genes	1028	1058*	394	2297	+ 1240
Number of articles	155	410	430*	985	+ 564
Number of miRNA-target interactions	1264	1513*	635	3576	+ 2063
No. of miRNA-target interactions validated by "Luciferase reporter assay"	305*	256	0	2017	+ 1345
No. of miRNA-target interactions validated by "Western blotting"	27	290*	0	901	+ 606
No. of miRNA-target interactions validated by "Luciferase reporter assay AND Western blotting"	25	123	0	711	+ 588
No. of miRNA-target interactions validated by "Luciferase reporter assay or Western blotting"	307	636*	635	2207	+ 1460
No. of miRNA-target interactions validated by "pSILAC experiments"	455	0	0	455	+ 0
No. of miRNA-target interactions validated by "Microarray experiments"	343	380*	0	861	+ 481

Histogram of various features of experimental proven miRNAtarget sites

Data were obtained from 527 human miRNA-target interactions curated in miRTarBase


As a database, miRTarBase has accumulated more than three thousand **miRNA-target interactions (MTIs)**, which are collected by manually surveying pertinent literature after data mining of the text systematically to filter research articles related to functional studies of miRNAs. Generally, the collected MTIs are validated experimentally by reporter assay, western blot, or microarray experiments with overexpression or knockdown of miRNAs. miRTarBase currently curates **3,576 experimentally verified MTIs between 657 miRNAs and 2,297 target genes** among 17 species. While containing the largest amount of validated MTIs, the miRTarBase provides the most updated collection by comparing with other similar, previously developed databases.

Go to browse the database !!

If you make use of the data presented here, please cite the following article in addition to the primary data sources:

miRTarBase: a database curates experimentally validated microRNA-target interactions

Hsu SD, Lin FM, Wu WY, Liang C, Huang WC, Chan WL, Tsai WT, Chen GZ, Lee CJ, Chiu CM, Chien CH, Wu MC, Huang CY, Tsou AP, Huang HD. (2011) Nucleic acids research. [<u>PUBMED</u>]

Current curation

- Number of miRNA-target interactions: 3,576
- Number of miRNAs:657
- Number of target genes: 2,297
- Number of species: 17
- Number of articles: 985
- Release 1.0: Oct. 15, 2010

How to donate your data?

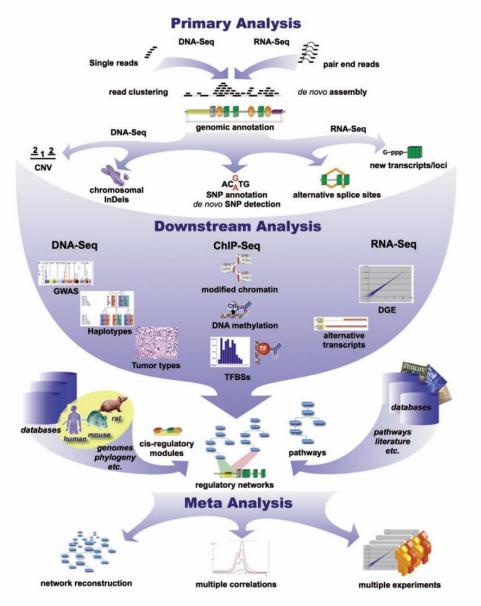
- Suggest an article
- Submit miRNA-target interactions
- Report errors

Quick links for popular miRNAs or target genes

- Example 1: hsa-miR-122 is a liver-specific microRNA which is significantly down-regulated in liver cancers.
- Example 2: hsa-miR-1 microRNA-1-1 (miR-1-1) and miR-1-2 are specifically expressed in cardiac and skeletal muscle precursor cells.
- Example 3: CDKN1A Cyclin-dependent kinase inhibitor 1A (CDKN1A), also known as p21Cip1/Waf1, is a master downstream effector of tumor suppressors.
- Example 4: HIF1A Hypoxia-inducible factor-1alpha (HIF-1alpha) is widely considered to be one of the key regulators of tumor angiogenesis.
- Example 5: HMGA2 is an important regulator of cell growth, differentiation, apoptosis, and transformation.

Development plans and sponsors

- We are a dedicated group of people, who aim to create a leading repository for miRNA-target interactions.
- Funded by National Science Council, Taiwan
- Funded by National Chiao Tung University

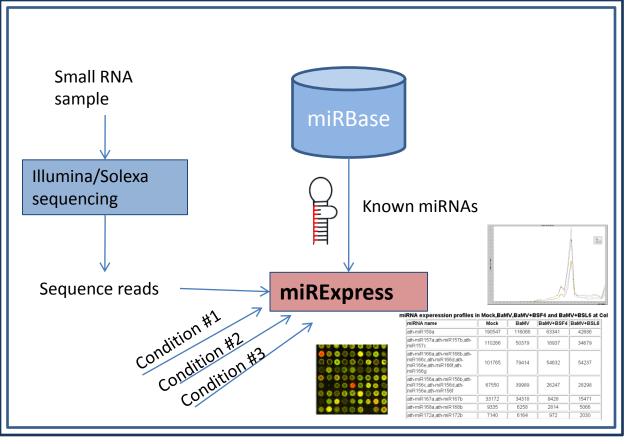

Search...

SEARCH EXAMPLE

Home Search Browse Statistics Help Submit Contact Us

		~ ~	Page 1 of 2 🖌	🔨 A 30 💌	View 1 - 30 of 43
ID	Species	miRNA 🎗	Target Gene	Validation Method	
MIRT000012	Human (Homo sapiens)	hsa-miR-122	CYP7A1	qRT-PCR, Luciferase assay	
MIRT000364	Human (Homo sapiens)	hsa-miR-122	Igf1R	Luciferase assay	
MIRT000365	Human (Homo sapiens)	hsa-miR-122	SRF	Luciferase assay	
MIRT000366	Human (Homo sapiens)	hsa-miR-122	ADAM-10	Luciferase assay	
MIRT000663	Human (Homo sapiens)	hsa-miR-122	RAC1	Luciferase assay, Review	
MIRT000717	Human (Homo sapiens)	hsa-miR-122	RHOA	Luciferase assay, Review	
MIRT000943	Human (Homo sapiens)	hsa-miR-122	Bcl-w	Luciferase assay, RT-PCR, Western blot	
MIRT003006	Human (Homo sapiens)	hsa-miR-122	CCNG1	Reporter assay, Luciferase assay	
MIRT003079	Human (Homo sapiens)	hsa-miR-122	GTF2B	RT-PCR, real time RT-PCR	
<u>MIRT003080</u>	Human (Homo sapiens)	hsa-miR-122	GYS1	RT-PCR, Western blot, Northern blot, real ti	me RT-PCR
MIRT003081	Human (Homo sapiens)	hsa-miR-122	ANK2	Dual-luciferase assay, RT-PCR	
MIRT003082	Human (Homo sapiens)	hsa-miR-122	NFATC2IP	Dual-luciferase assay, RT-PCR	
MIRT003083	Human (Homo sapiens)	hsa-miR-122	ENTPD4	Dual-luciferase assay, RT-PCR	
MIRT003084	Human (Homo sapiens)	hsa-miR-122	ANXA11	Dual-luciferase assay, RT-PCR	
MIRT003085	Human (Homo sapiens)	hsa-miR-122	ALDOA	Dual-luciferase assay, RT-PCR, Northern blo	t
MIRT003086	Human (Homo sapiens)	hsa-miR-122	RAB6B	Dual-luciferase assay, RT-PCR	
MIRT003087	Human (Homo sapiens)	hsa-miR-122	RAB11FIP1	Dual-luciferase assay, RT-PCR	
MIRT003088	Human (Homo sapiens)	hsa-miR-122	FOXP1	Dual-luciferase assay, RT-PCR	
MIRT003089	Human (Homo sapiens)	hsa-miR-122	MECP2	Dual-luciferase assay, RT-PCR	
MIRT003090	Human (Homo sapiens)	hsa-miR-122	NCAM1	Dual-luciferase assay, RT-PCR	
MIRT003091	Human (Homo sapiens)	hsa-miR-122	UBAP2	Dual-luciferase assay, RT-PCR	
MIRT003092	Human (Homo sapiens)	hsa-miR-122	TBX19	Dual-luciferase assay, RT-PCR	
MIRT003093	Human (Homo sapiens)	hsa-miR-122	AACS	Dual-luciferase assay, RT-PCR	
MIRT003094	Human (Homo sapiens)	hsa-miR-122	DUSP2	Dual-luciferase assay, RT-PCR	
MIRT003095	Human (Homo sapiens)	hsa-miR-122	ATP1A2	Dual-luciferase assay, RT-PCR	
MIRT003096	Human (Homo sapiens)	hsa-miR-122	ALS2CR13	Dual-luciferase assay, RT-PCR	
MIRT003097	Human (Homo sapiens)	hsa-miR-122	MAPK11	Dual-luciferase assay, RT-PCR	
MIRT003098	Human (Homo sapiens)	hsa-miR-122	FUNDC2	Dual-luciferase assay, RT-PCR	
MIRT003099	Human (Homo sapiens)	hsa-miR-122	AKT3	Dual-luciferase assay, RT-PCR	
MIRT003100	Human (Homo sapiens)	hsa-miR-122	TPD52L2	Dual-luciferase assay, RT-PCR	

Next Generation Sequencing (NGS) in Functional Genomics



- Pipeline ready
 - RNA-seq
 - Small RNA-seq
 - ChIP-seq
 - Genome sequencing
 - Human resequencing
 - DNA methylation sequencing
- In developing
 - Amplicons sequencing
 - Metagenomics
 - Ribosomal RNAs sequencing only
 - Multiple genome sequencing

Figure from Briefings in Bioinformatics, 2010, Vol. 11, No.5, pp. 499-511

Next-Generation Sequencing (NGS) - small RNA sequencing

Identification of miRNAsmiRNA expression profiling

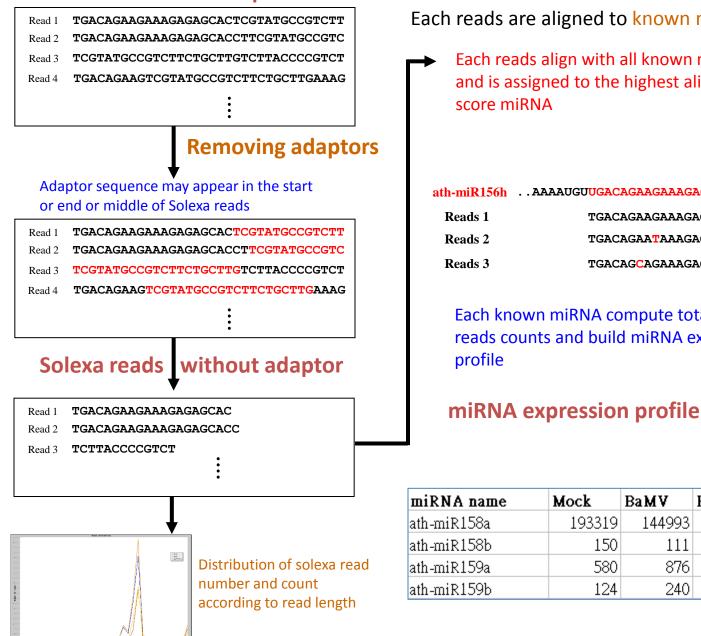
An effective tool to generate miRNA Expression profiles from high-throughput sequencing data (BMC Bioinformatics, 2009)

- a. High-throughput
- b. Sequencing short sequences
- c. Inexpensive

Next-generation Sequencing Technology

(Elaine R. Mardis 2008)

	Platform		
	Roche(454)	Illumina	SOLiD
Sequencing chemistry	Pyrosequencing	Polymerase-based sequencing-by-synthesis	Ligation-based sequencing
Amplification approach	Emulsion PCR	Bridge amplification	Emulsion PCR
Paired ends/separation	Yes/3 kb	yes/200 bp	Yes/3 kb
Mb/run	100 Mb	1300 Mb	3000 Mb
Time/run (paired ends)	7 h	4 days	5 days
Read length	250 bp	32–40 bp	35 bp
Cost per run (total direct ^a)	\$8439	\$8950	\$17 447
Cost per Mb	\$84.39	\$5.97	\$5.81


The example of next-generation sequencing (NGS) for miRNAs

microRNA ID	Pre-miRNA arm (5-p or 3-p)	Most abundant sequence (isomiR)	hESC count	EB count	P-value	Fold change
miR-199a	3-р	ACAGTAGTCTGCACATTGGTTA	1110	13,163	0.00	11.86
miR-372	3-p	AAAGTGCTGCGACATTTGAGCGT	1388	13,653	0.00	9.84
miR-122	5-p	TGGAGTGTGACAATGGTGTTTG	436	2565	0.00	5.88
miR-152	3-р	TCAGTGCATGACAGAACTTGG	622	3028	0.00	4.87
miR-10a	5-p	TACCCTGTAGATCCGAATTTGT	948	3887	0.00	4.10
let-7a	5-p	TGAGGTAGTAGGTTGTATAGTT	11,902	2951	0.00	4.03
miR-302a	5-p	TAAACGTGGATGTACTTGCTTT	36,800	9917	0.00	3.71
miR-222	3-p	AGCTACATCTGGCTACTGGGTCTC	4719	1331	0.00	3.55
miR-340	5-p	TTATAAAGCAATGAGACTGATT	2247	7198	0.00	3.20
miR-363	3-р	AATTGCACGGTATCCATCTGTA	5775	17,912	0.00	3.10
miR-21	5-p	TAGCTTATCAGACTGATGTTGAC	39,818	21,003	0.00	1.90
miR-221	3-р	AGCTACATTGTCTGCTGGGTTTC	16,275	8716	0.00	1.87
miR-26a	5-p	TTCAAGTAATCCAGGATAGGCT	4892	8530	0.00	1.74
miR-26b	5-p	TTCAAGTAATTCAGGATAGGTT	1003	2957	$1.39 imes 10^{-278}$	2.95
miR-130a	3-р	CAGTGCAATGTTAAAAGGGCAT	2334	4798	$2.20 imes 10^{-265}$	2.06
miR-594	5-p	ATGGATAAGGCATTGGC	1717	211	$1.96 imes 10^{-253}$	8.14
miR-302b	3-p	TAAGTGCTTCCATGTTTTAGTAG	15,169	8855	$1.39 imes 10^{-213}$	1.71
miR-744	5-p	TGCGGGGCTAGGGCTAACAGCA	4166	1516	$4.17 imes 10^{-213}$	2.75
miR-30d	5-p	TGTAAACATCCCCGACTGGAAGCT	2798	4988	$3.29 imes 10^{-205}$	1.78
miR-146b	5-р	TGAGAACTGAATTCCATAGGCTGT	703	2075	$2.27 imes 10^{-196}$	2.95

Table 1. Top 20 miRNAs differentially expressed between the hESC and EB libraries

Morin, R.D., et al., *Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells.* Genome Res, 2008. 18(4): p. 610-21.

Solexa reads with adaptor

Each reads are aligned to known miRNAs

Each reads align with all known miRNAs and is assigned to the highest alignment score miRNA

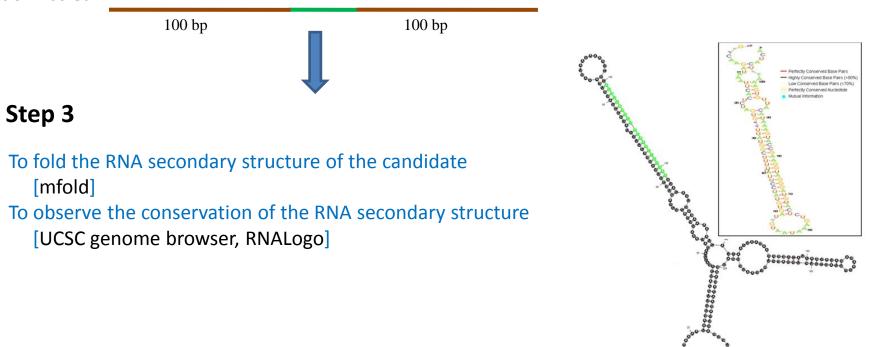
http://microrna.sanger.ac.uk/sequences/

ath-miR156h	AAAAUGU <mark>UGACAGAAGAAGAGAGAGCAC</mark> AACCUGG
Reads 1	TGACAGAAGAAGAGAGCAC
Reads 2	TGACAGAATAAAGAGAGCAC
Reads 3	TGACAG <mark>C</mark> AGAAAGAGAGCAC

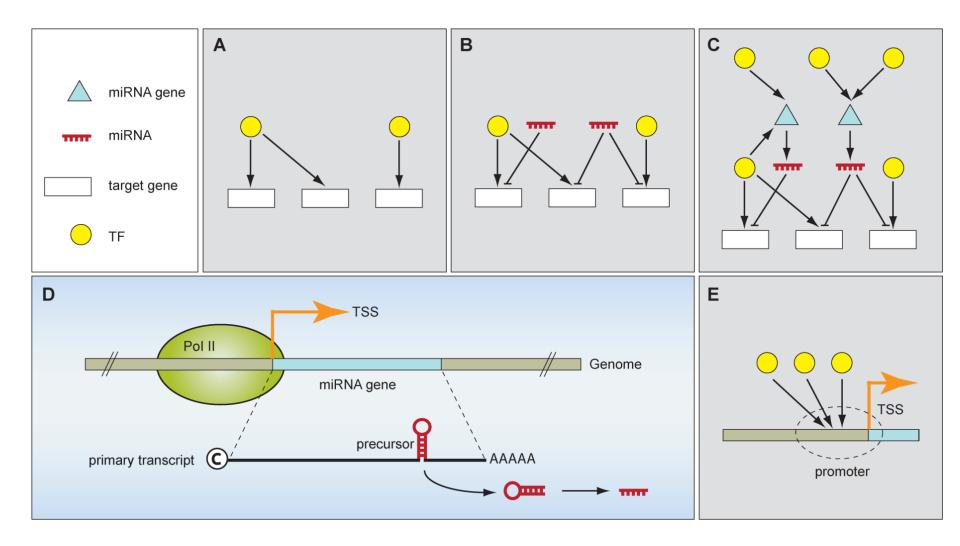
Each known miRNA compute total solexa reads counts and build miRNA expression profile

miRNA name	Mock	BaMV	BaMV+BSF4	BaMV+BSL6
ath-miR158a	193319	144993	72515	135784
ath-miR158b	150	111	61	93
ath-miR159a	580	876	170	619
ath-miR159b	124	240	48	138

Discovery of novel miRNAs in Human

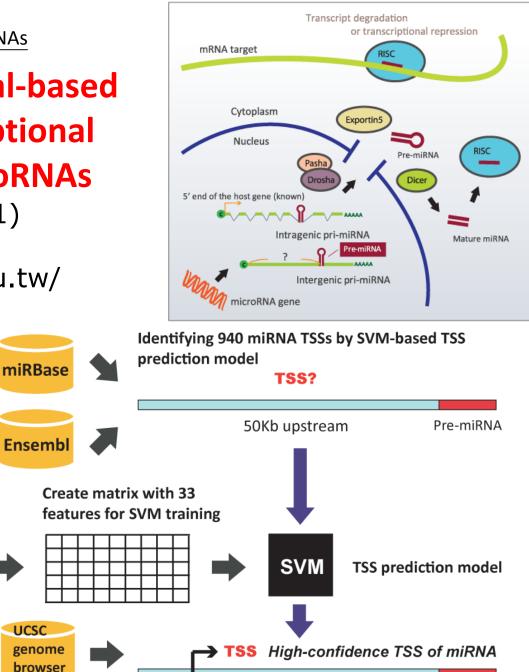

Step 1

To cluster sequencing reads which can't be mapped to known miRNAs

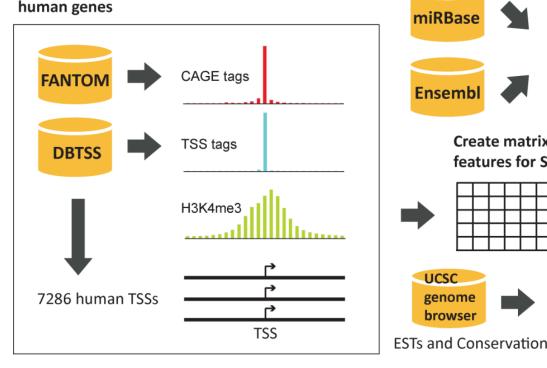

Constraints of miRNAs

Step 2

To map sequencing read to genome and to extract its flanking upstream and downstream


Transcriptional regulation of miRNA genes

Deciphering transcriptional regulation of miRNAs


miRStart: An experimental-based resource defines transcriptional start sites of human microRNAs (Nucleic Acids Research, 2011)

http://miRStart.mbc.nctu.edu.tw/

50Kb upstream

Pre-miRNA


Map experimental evidences around TSSs of 7286

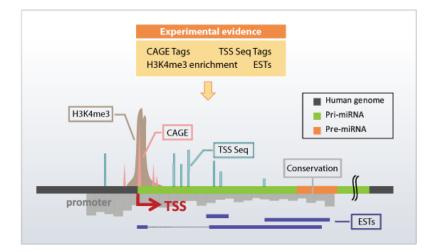
An example

5-fold cross-validation:

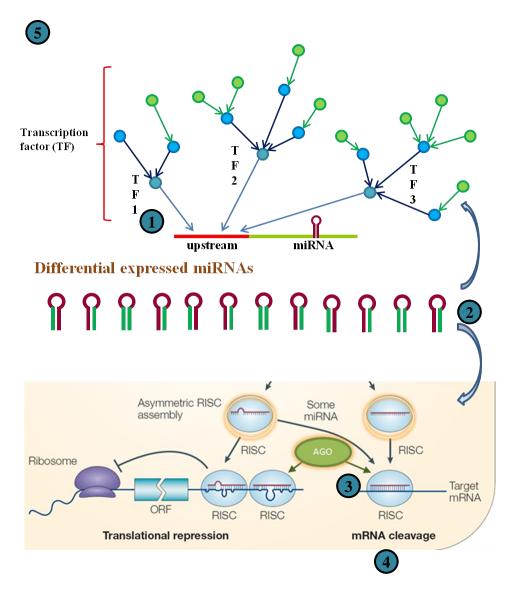
Sensitivity = 90.36%, Specificity = 90.05%, Accuracy = 90.21% and Precision = 90.08%, using promoters of protein-coding genes as training data

The human miRNA let-7a-1 demonstrates a good example of TSS identification. \longrightarrow TSS: 96928529

What's new?


July 21, 2010 miRStart is online for evaluation... miRStart, a novel resource of human microRNA TSSs (transcription start sites), systematically incorporates significant datasets derived from TSS-relevant experiments to identify transcription start sites of microRNAs. The distribution patterns of these experimental features within 50 k upstream region of microRNA precursors provides an insight into determining reliable microRNA TSSs. In general, a high-confidence TSS is recommended for each microRNA based on a SVM training model. However, users can customize their preferable microRNA TSSs according to the straightforward display of experimental TSS signals.

Published experimental evidences used in miRStart are described as follows:


(1) CAGE (Cap Analysis of Gene Expression) tags: Recognize 5'-end of a gene
(2) TSS Seq tags: More than 300 million 5'-end sequences of human and mouse cDNAs by combining oligo-capping method and Solexa sequencing technology
(3) H3K4me3 enrichment (histone H3 is trimethylated at its lysine 4 residue): Enriched surrounding TSSs

Moreover, ESTs and comparative genomics around putative miRNA TSSs are used to provide strong supports for reconfirmation.

The following figure demonstrates the concept of miRStart.

Using NGS for analyzing small non-coding RNAs

1 Identifying TFs which regulate miRNAs

Chip (chromatin immunoprecipitation)-seq

2 Profiling miRNA expression

Small RNA NGS sequencing

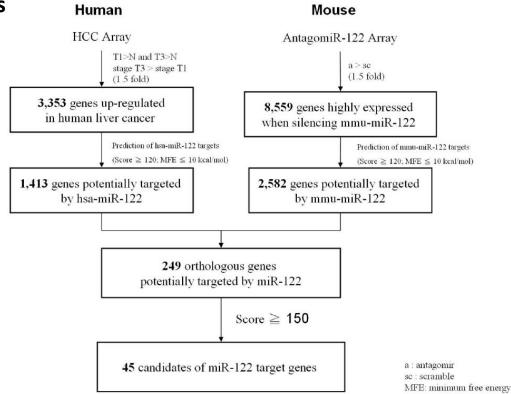
3 Identifying miRNA target interaction

CLIP (crosslinking immunoprecipitation)-seq Degradome-seq

mRNA expression RNA-seq

5 DNA methylation

BS (bisulfate)-seq **MeDIP** (methylated DNA immunoprecipitation)-seq **MBD** (methyl-binding protein)-seq


An example of utilizing our miRNA databases and tools

Investigation roles of miR-122a in human hepatocellular carcinoma (HCC)

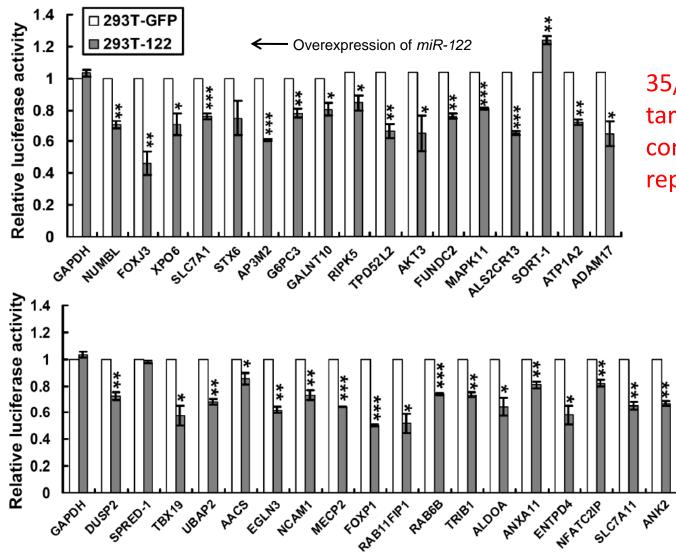
W.C. Tsai *et al.* (2009) "MicoRNA-122, a tumor suppressor microRNA that regulates intra-hepatic metastasis of hepatocellular carcinoma" *Hepatology*, Vol. 49, No. 5, pp. 1571-1582. (SCI IF=10.885, Rank = 2/72, GASTROENTEROLOGY & HEPATOLOGY)

Collaborations with Prof. A.P. Tsou, National Yang Ming University

SCI Citations ~ 80 Highly-cited paper selected by Essential Science Indicator

Identifying miR-122 targets in human hepatocellular carcinoma

- miR-122 is liver-specific and down-regulated in HCC
- As a tumor suppressor microRNA
- Genes, which are potentially down-regulated by <u>miR-122</u>, were derived from HCC microarray and AntigomiR-122 microarray experiments
 - Hepatocellular carcinoma (HCC) microarray 3353 up-regulated genes in liver cancer. (1.5 fold change) human
 - AntigomiR-122 microarray 8859 genes up-regulated genes when silencing mmu-mir-122. (1.5 fold change) mouse


Human Mouse HCC Array AntagomiR-122 Array T1>N and T3>N a > scstage T3 > stage T1 (1.5 fold) (1.5 fold) 3,353 genes up-regulated 8,559 genes highly expressed in human liver cancer when silencing mmu-miR-122 Prediction of hsa-miR-122 targets Prediction of mmu-miR-122 targets (Score ≥ 120 ; MFE ≤ 10 kcal/mol) (Score ≥ 120 ; MFE ≤ 10 kcal/mol) 2,582 genes potentially targeted 1,413 genes potentially targeted by hsa-miR-122 by mmu-miR-122 249 orthologous genes potentially targeted by miR-122 miR-122 is liver-specific and downregulated in HCC Score ≥ 150 As a tumor suppressor miRNA 45 candidates of miR-122 target genes a : antagomir sc : scramble MFE: minimum free energy

Candidate target genes of *miR-122*.

Relative gene expression detected in the microarray assays is shown as mean ratios of T3/T1 for HCC samples and an/c for mice treated with antagomiR-122 (an) compared to control mm-antagomiR122 (c).

<u></u>	Т3
	67
-	
log2Z -1 0	0 1 2 3

Gene	T3/T1	Sc-H	MFE-H	an/c	Sc-H	MFE-M	Molecular Function	# Bindin sites
NUMBL	3.1	181	-20.5	4.5	131	-14.5	Protein binding	7
FOXJ3	1.6	176	-21	1.7	133	-10.6	Transcription factor	3
XPO6	2.2	174	-22.3	1.7	125	-16.4	Nuclear protein transport	2
SLC7A1	2.6	173	-22.4	1.7	173	-23.6	Amino acid transport	4
STX6	1.6	169	-20.9	2.5	135	-17.2	Protein transport	3
AP3M2	1.6	168	-19.9	3.0	129	-15.9	Protein trafficking	3
G6PC3	2.1	167	-18.4	6.1	158	-13.1	Glucose-6-phospgatase	1
GALNT10	1.6	167	-20.4	1.9	152	-20.5	Calcium binding	6
ARHGAP19	1.7	166	-21.5	1.7	143	-17.2	GTPase	4
RIPK5	1.8	166	-18	1.6	150	-16.6	Kinase activity	4
TPD52L2	3.0	166	-23.8	16.3	140	-16.5	Cell proliferation	6
AKT3	2.0	165	-18.7	2.1	162	-15.6	Cell proliferation, apoptosis	2
FUNDC2	2.5	165	-18	2.1	161	-15.8	HCV core binding protein	4
MAPK11	3.2	165	-20.2	1.6	123	-19.1	MAPK activity	2
ALS2CR13	2.0	162	-17.3	6.7	163	-17	Unknown	3
BACH2	1.8	162	-15	2.7	140	-13.5	Transcription factor	3
ATP11A	2.0	161	-12.9	1.9	162	-18.1	Transport ions	7
SORT1	2.2	161	-16.2	2.0	154	-15.3	Cell differentiation	2
ATP1A2	3.5	160	-17	1.5	134	-11.7	Ion concentration balance	7
ADAM17	1.7	159	-19	2.0	122	-17	Cell cell interaction	1
DUSP2	1.8	159	-13.4	1.6	122	-11.1	MAPK phosphatase	2
OSMR	2.5	159	-15.8	2.9	142	-15.5		4
RABIF	1.7	159	-15.6	2.9	139	-15.5	Cell proliferation	2
PALM	2.3	159	-15.9	16.1	161	-15.1	Small GPT regulator activity	3
	2.3	156			145		Cell mobility and cell shape	
SPRED1	1.8	155	-21.2	1.6	145	-19.8 -17.8	Activate MAPK kinase	1
AACS			-13.8	1.8			isoprenoid biogenesis	
TBX19	2.1	155	-17.2	4.3	131	-13.1	Transcription factor	5
UBAP2	2.2	155	-18.8	2.7	131	-23.3	Ubiquitin associated protein	2
EGLN3	3.9	154	-17	1.6	137	-15.7	Apoptosis	1
NCAM1	1.9	154	-15.2	3.8	154	-15.2	Cell differentiation	4
MECP2	2.2	153	-12.1	3.1	160	-26.2	Transcription	6
CS	1.6	152	-12.6	1.8	148	-11.9	Catalyze synthesis of citrate	3
FOXP1	1.6	152	-10.8	1.8	167	-17.7	Transcription factor	1
RAB11FIP1	1.5	152	-20.1	1.9	133	-13.3	Protein transport	4
RAB6B	1.5	152	-13.3	1.6	164	-19.6	GTPase	5
TRIB1	2.1	152	-17.4	1.8	134	-12.8	Kinase activity	4
TTYH3	1.8	152	-17.1	1.9	160	-16.6	Chlorode anion channel	2
ALDOA	3.7	151	-13.2	2.2	157	-16.7	Amino acid transport	2
ANXA11	2.0	151	-18.6	4.3	139	-17.2	Calcium binding	7
CLDN18	1.7	151	-18.5	1.9	130	-15.1	Cell and cell adhesion	4
ENTPD4	2.0	151	-18.5	2.0	131	-13.5	Calcium binding	2
NFATC2IP	2.7	151	-19.9	2.2	135	-15.2	Protein modification	4
ANK2	2.1	150	-12	3.1	137	-17.9	Cell proliferation	5
MEP1A	4.3	150	-17.8	1.6	132	-12.8	Peptidase	3
NFATC1	1.8	150	-13.1	2.3	148	-14.9	Transcription factor	3
SLC7A11	9.5	150	-19.5	1.6	164	-14.4	Amino acid transport	4

35/45 (78%) miR-122 target genes were confirmed by luciferase reporter assay.

Confirmation of *miR-122* **target genes.** *A*, The 3'UTR reporter assay. Putative *miR-122* binding sites in the 3'UTR of the predicted target genes were sublconed downstream of the luciferase gene in pGL3-Control vector. Target reporter assay was carried out in 293T cells overexpressing *miR-122* from lenti-122 virus infection (293T-122).

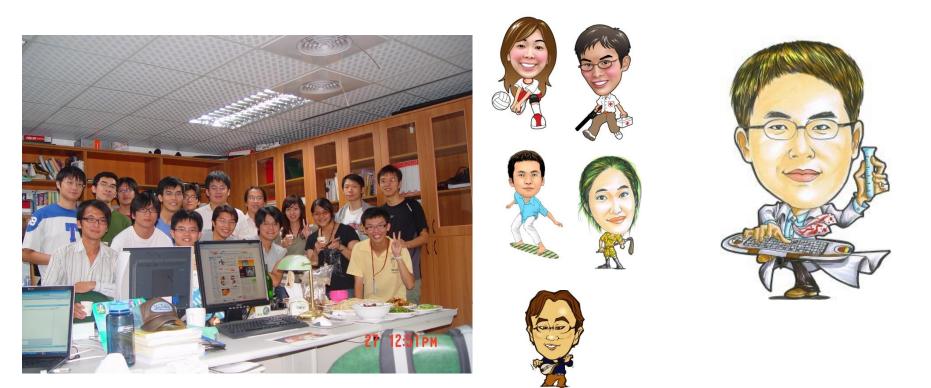


Search...

Home Search Browse Statistics Help Submit Download Contact Us

		~ ~ P	age 1 of 2 🗸	× ▲ 30 💌 View 1 - 30 of 45
ID	Species	miRNA 🛠	Target Gene	Validation Method
MIRT003131	Human (Homo sapiens)	hsa-miR-122	SLC7A1	Luciferase assay, Western blot, Northern blot
MIRT003112	Human (Homo sapiens)	hsa-miR-122	ADAM17	Dual-luciferase assay, RT-PCR, Luciferase assay
MIRT003111	Human (Homo sapiens)	hsa-miR-122	NUMBL	Dual-luciferase assay, RT-PCR
MIRT003110	Human (Homo sapiens)	hsa-miR-122	EGLN3	Dual-luciferase assay, RT-PCR
MIRT003109	Human (Homo sapiens)	hsa-miR-122	TRIB1	Dual-luciferase assay, RT-PCR
<u>MIRT003108</u>	Human (Homo sapiens)	hsa-miR-122	SLC7A11	Dual-luciferase assay, RT-PCR
MIRT003107	Human (Homo sapiens)	hsa-miR-122	FOXJ3	Dual-luciferase assay, RT-PCR
MIRT003106	Human (Homo sapiens)	hsa-miR-122	XPO6	Dual-luciferase assay, RT-PCR
<u>MIRT003105</u>	Human (Homo sapiens)	hsa-miR-122	SLC7A1	Dual-luciferase assay, RT-PCR
MIRT003104	Human (Homo sapiens)	hsa-miR-122	AP3M2	Dual-luciferase assay, RT-PCR
MIRT003103	Human (Homo sapiens)	hsa-miR-122	G6PC3	Dual-luciferase assay, RT-PCR
MIRT003102	Human (Homo sapiens)	hsa-miR-122	GALNT10	Dual-luciferase assay, RT-PCR
<u>MIRT003101</u>	Human (Homo sapiens)	hsa-miR-122	DSTYK	Dual-luciferase assay, RT-PCR
<u>MIRT003100</u>	Human (Homo sapiens)	hsa-miR-122	TPD52L2	Dual-luciferase assay, RT-PCR
<u>MIRT003099</u>	Human (Homo sapiens)	hsa-miR-122	АКТ3	Dual-luciferase assay, RT-PCR
<u>MIRT003098</u>	Human (Homo sapiens)	hsa-miR-122	FUNDC2	Dual-luciferase assay, RT-PCR
MIRT003097	Human (Homo sapiens)	hsa-miR-122	MAPK11	Dual-luciferase assay, RT-PCR
<u>MIRT003096</u>	Human (Homo sapiens)	hsa-miR-122	FAM117B	Dual-luciferase assay, RT-PCR
MIRT003095	Human (Homo sapiens)	hsa-miR-122	ATP1A2	Dual-luciferase assay, RT-PCR
<u>MIRT003094</u>	Human (Homo sapiens)	hsa-miR-122	DUSP2	Dual-luciferase assay, RT-PCR
<u>MIRT003093</u>	Human (Homo sapiens)	hsa-miR-122	AACS	Dual-luciferase assay, RT-PCR
MIRT003092	Human (Homo sapiens)	hsa-miR-122	TBX19	Dual-luciferase assay, RT-PCR
<u>MIRT003091</u>	Human (Homo sapiens)	hsa-miR-122	UBAP2	Dual-luciferase assay, RT-PCR
<u>MIRT003090</u>	Human (Homo sapiens)	hsa-miR-122	NCAM1	Dual-luciferase assay, RT-PCR
<u>MIRT003089</u>	Human (Homo sapiens)	hsa-miR-122	MECP2	Dual-luciferase assay, RT-PCR
<u>MIRT003088</u>	Human (Homo sapiens)	hsa-miR-122	FOXP1	Dual-luciferase assay, RT-PCR
MIRT003087	Human (Homo sapiens)	hsa-miR-122	RAB11FIP1	Dual-luciferase assay, RT-PCR
<u>MIRT003086</u>	Human (Homo sapiens)	hsa-miR-122	RAB6B	Dual-luciferase assay, RT-PCR
MIRT003085	Human (Homo sapiens)	hsa-miR-122	ALDOA	Dual-luciferase assay, RT-PCR, Northern blot
MIRT003084	Human (Homo sapiens)	hsa-miR-122	ANXA11	Dual-luciferase assay, RT-PCR

Strategies to achieve both high sensitivity and high specificity


Ways to achieve higher prediction specificity (lower false positive rate)

- More specific miRNAs
- More experimental data
- Selecting miRNAs by biologists' knowledge
- Species dependent
- More positive samples
- More reasonable negative samples
- More effective biological features or properties
- More experimental data
- Multi-dimensional data
- Multiple screening criteria
- Selecting genes by biologists' knowledge
- Smaller gene set

http://www.cc.nctu.edu.tw/~bryan

Or Google Search by "Hsien-Da Huang"

Thank you for your attention!!

