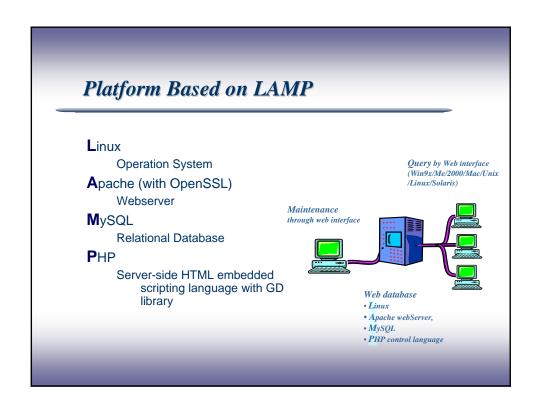
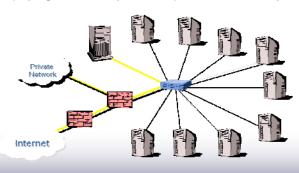


Comparative Genomics and Interactomics


1. Division of Biostatistics and Bioinformatics. NHRI

2.Institute of Information Science, Academia Sinica

July. 2006.


Objectives

- > Comparative genomics and Interactomics
- Provide handy bioinformatic tools on-line as listed below:
 - > Primer design tool with a web interface.
 - > Phylogenetic analysis web tool
 - > Protein-protein interaction prediction tool.
- Acquaint users in need with these tools via workshops and assistant services.

Infrastructure for Large Scale Studies

 PC clusters for high throughput computation for large-scale sequence phylogenetic analyses and protein motif analyses.

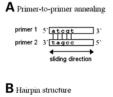
Currently available service

- Comparative Genomics
 - Primer Design Assistant (PDA)
 - Assistance of primer design for single or multiple sequences under the same condition
 - Providing a easy way to design the nested primers for specific PCR Reactions

http://dbb.nhri.org.tw/primer/

Currently available service (conti) **Primer Design Assistant** Input format: fasta ○ text Sequence(s) input or file upload (PDA) Customized PCR conditions 瀏覽... Primer length: 19 🔻 PCR product size: 150 🔻 Dimer check Dimer check: No ○ Yes Hairpin check 5'GC content check 3'GC content check **Covered region** Covered region -- End on search reset

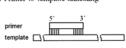
Criterion for PDA Setting


Default Settings

Repeats	Any four continual nucleotides (AAAA, TTTT, CCCC, or GGGG) will be avoided for both forward and reversed primers. Continuous dinucleotide repeats, such as 'ATATAT', are also avoided.								
C/G clamp	G or C on the end of 3' terminal								
GC %	25% ~ 75%								
Tm	Tm of forward and reversed primers restricted to be higher than 50°C								
∆Tm	restricted to be smaller than 5°C								

Advanced options

	To a di la principio
Dimer check:	This option turns on can avoid primer dimer formation.
Hairpin check:	This option turns on can avoid internal self- complementarity.
5' GC content check:	Check the GC% of 5' to add the ability to recognize the template and enhance the priming specificity.
3' GC content check:	Check the GC% of 3' to avoid mismatch to avoid mismatch.
Covered region:	By entering the start position and stop position, you can get the PCR product containing the segment you need.


Calculation of the Stability of DNA Duplexes

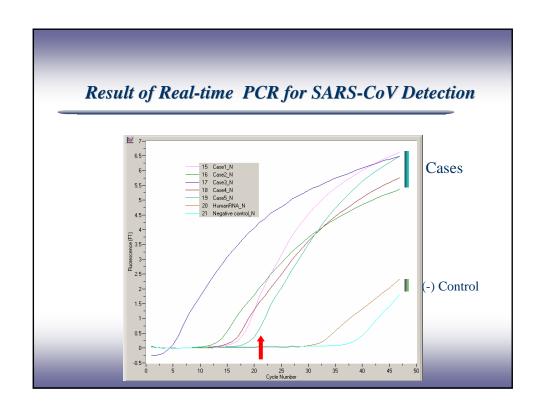
D Nearest-neighbor parameters for all possible NN dimer duplexes. Modified from SantaLucia 1998 (10).

Sequence	Free Energy Parameter
sequence	(ΔG°_{50})
Aа	-0.73
A t	-0.61
Ac	-1.16
Ag	-0.92
та	-0.32
T t	-0.73
Tc	-1.03
Τg	-1.16
Са	-1.16
C t	-0.92
Сc	-1.57
Сg	-1.81
Gа	-1.03
G t	-1.16
GC	-1.92
Gg	-1.57
A	0.98
T	0.98
C	1.00
G	1.00

C Primer-to-template annealing

Ranking Mechanism

The primer pairs passing through the limitations listed above are sorted by ranking score (R):


 $R = 100 - \Delta(T_{\rm m}) + \Delta G_{\rm forward}^{\circ}(3'-5') + \Delta G_{\rm reverse}^{\circ}(3'-5') + {\rm hairpin~score} + {\rm dimer~score}$

Current	ly available ser	vice (c	onti)
Input format Sequence(s) inpu or file upload Primer length: PCR product size	19 ▼	×	Batch primer design for unified experimental conditions

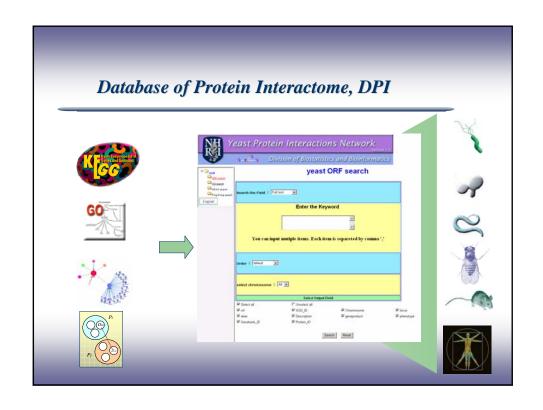
y	41	1	•7	. 7.	7 .				•	_ /	,	49				
urr	enti	ly ai	auc	lD	ıe	S	e i	rV	lCe	? (co	nu)			
				_	_	_	_	_	_	_	_					
														PD	Δ	
												_				
			Repeats	:	cri	teria			Floor	2100			≀ер	ort	: pa	ıç
format	primer_length	primer_windo	amaid.	C/G		m A	dime	s hairp k chec	contes	3'GC atconten check	covered	node	ience			-
_			TTTT		25% .			+	clieca	CHECK				-		
text	19	150	yes	yes		≥ ≤ 7C57C	no	no	no	no	~	atggcgtcto	cttctagaaa.			
	fell t	net I	primer	primer		:% T	Tm of	offset	rank	PC	CR prod	uct		-		
	forward primer occgotgitcac reverse primer ocggacocigac				63.		0.27	3530 3679	1	0008	ctgttcaco	tgttct				
			ggaccetgace													
	forward		 cannecgagea cteleea 		63	16 57	127	728	2	00030	arresars	attract				
C		enien	٠ _		_	Al		-1		format		-	- 100			
	Ex	~~.	ctocag		CILL	E		F	0	Н	1	1	K	L	М	
	dowr	nload			2	D/G clan		content 6 - 759		ΔTm ≤5°C	dimer c	no no	no GC che	c 3' GC che	c covered re	egice
	forr	mat	otto vi		3		1000			-	-		-			
	1011	nat			5											
	forward		agccacacgcg		6 -	ggagoc	getocgi	atacaget	acaaccccg	accagttect	caacatgga	octcagggggcg	eccoccacgatg	gogtosocat	tocccgctoca	ocaş
	tenetse l	primer 10	gtggactccggs	(14)		diset	rank		PCR prod							
					9	35		- 15	occactatio	accetgiton	cacctcagas	ctococaggttta	cagagagoca	gtgcaagago	coefficeceta	oce
					B118											

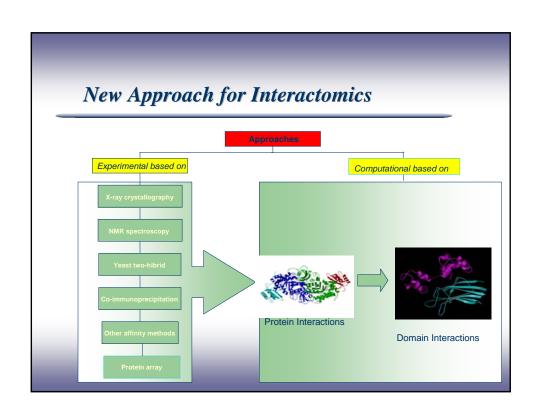
Use PDA to Develop PCR kits for SARS Detection

- 由於目前通用的SARS-CoV檢驗方法靈敏度有限,使得病毒量較低或是因採樣方法不佳的檢體無法被檢測到,在防疫的前提下,本組便與院內基因醫學組協同疾管局於發展出高靈敏度之檢測方法。
- 檢測方法中所需要的核酸引子都透過PDA來進行 設計,避免引子本身dimer及 hairpins 的形成, 加速了檢測方法的建立。
- 此方法為結合1st run RT-PCR + 2nd run Q-PCR, 可於1.5小時內檢測出結果,縱使病毒量低於10 隻,此一方法也可以檢測出來。

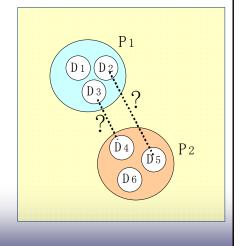
Primer Design Assistant (PDA)

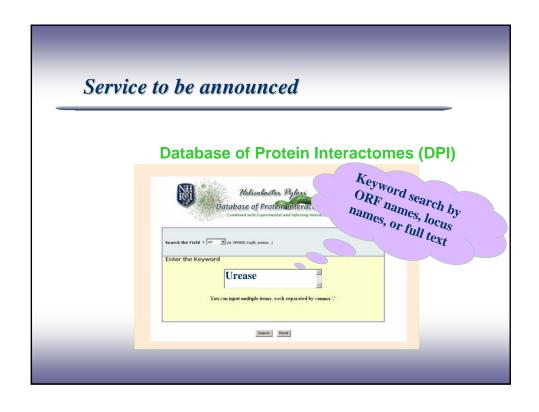
- Primers designed through PDA has been experimentally proved to reach 97% successful rate
- Free access
- Visits from 2003/07/01~2006/10/16: ~61,000
- Report primer sequences generated in this period of time: ~360,000

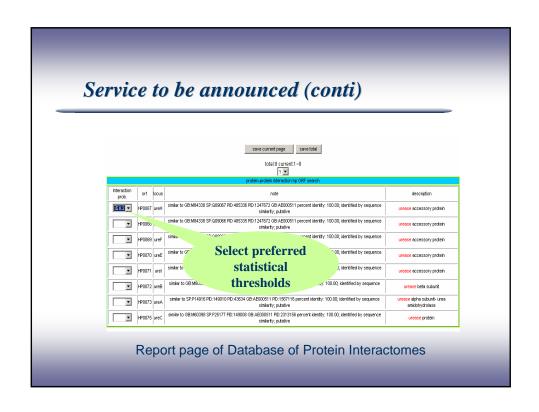

Future Plan for PDA

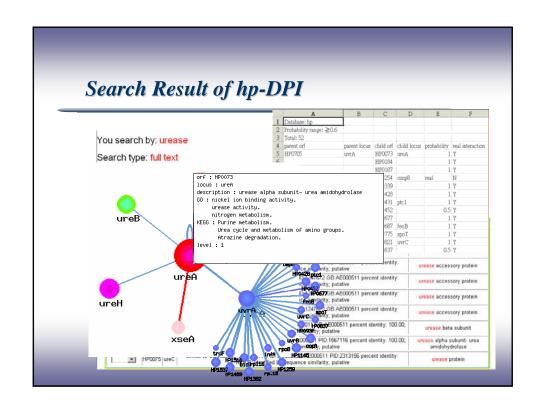

 Based on the similar algorithm with principles from the wet lab, we will develop novel interfaces to design the primers/probes for Multiplex PCR, Real-time PCR, methylation PCR etc..

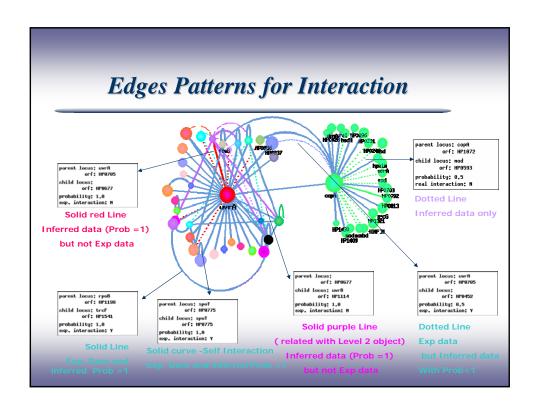
 Of course, all the applications will be online and accessed freely.

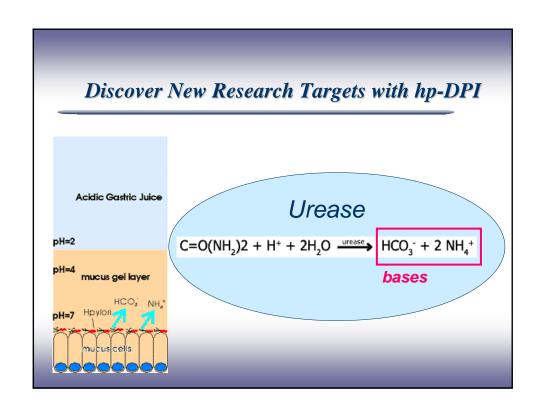

Target sequences in fasta format Select organism Avoid over-presented region in target sequence Based on thermodynamic theory and other critical issues, select primers near 3' Ranking the candidate primers Output on web in a session (in 60 sec)

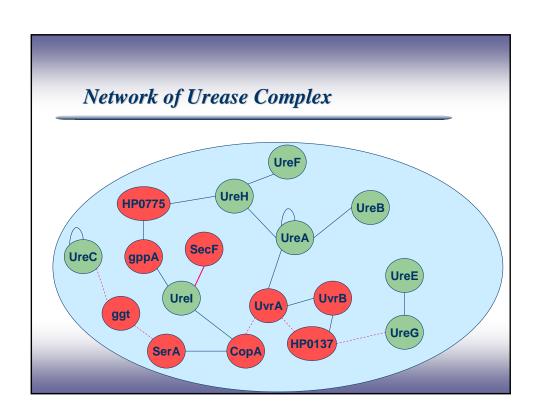


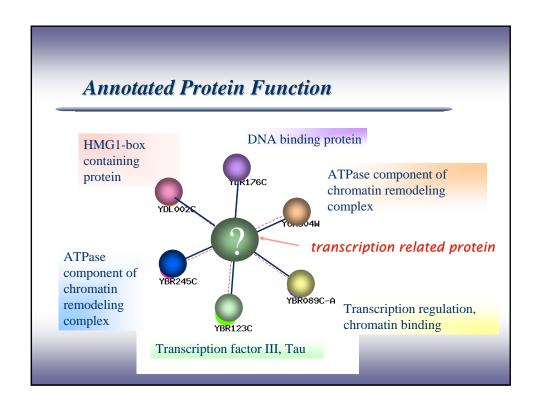

Inferred Protein Interactions

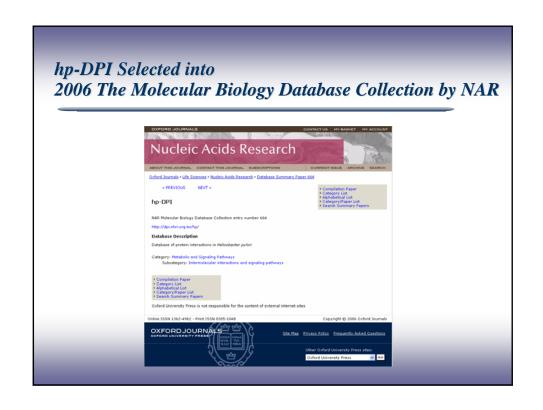

- Data from protein interactions
 - Wet lab produced
- Inferred protein interactions from domain interactions
 - Association method
 - EM(Expectation Maximization)- MLE value

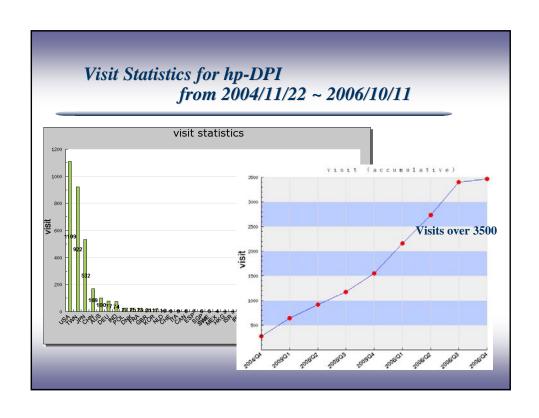


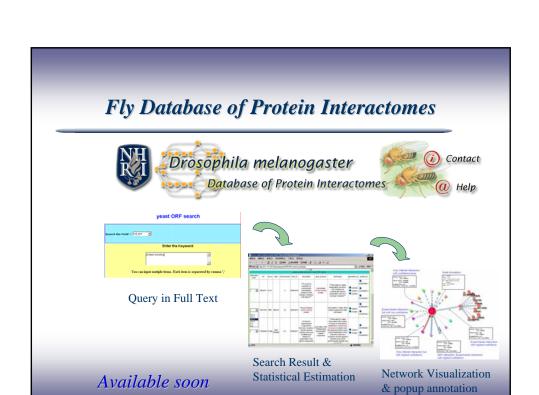




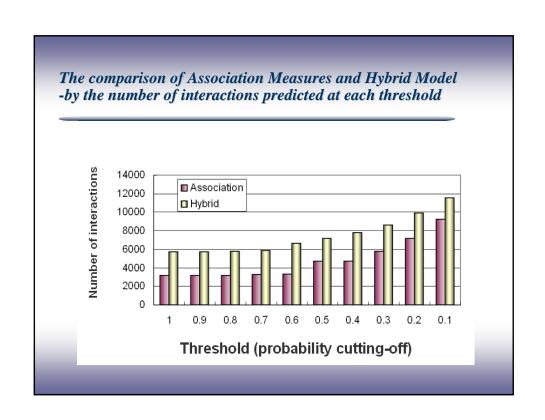


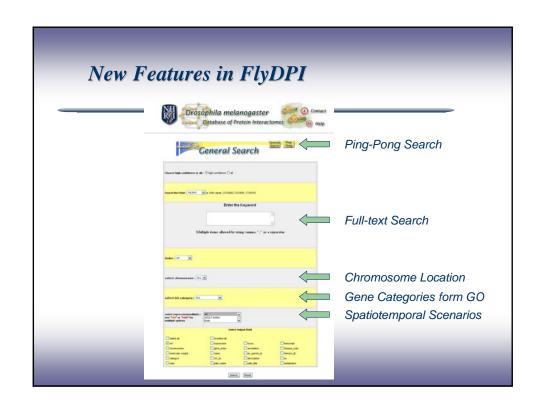


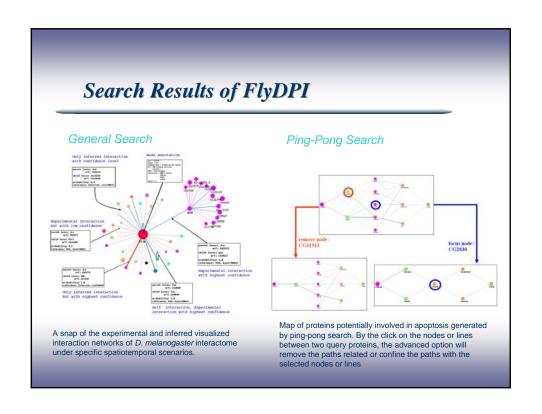




Features in hp-DPI (BMC Bioinformatics, 2006, In press)

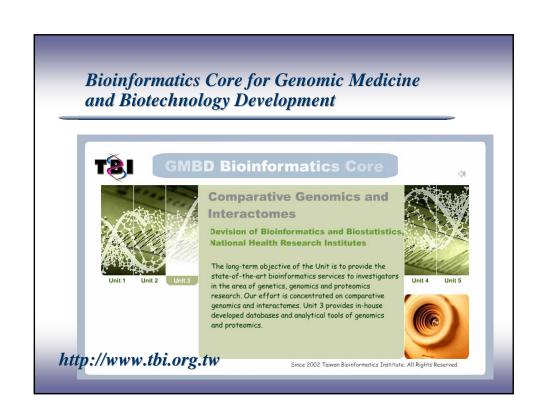

- Functions of hypothesized proteins can be speculated through such a network approach as well
- This system not only generates inferring interactions but also functions as an examining tool to point out possible false positive results derived from two-hybrid experiments.
- With LAMP, this system is able to provide highquality and speedy services with free cost.

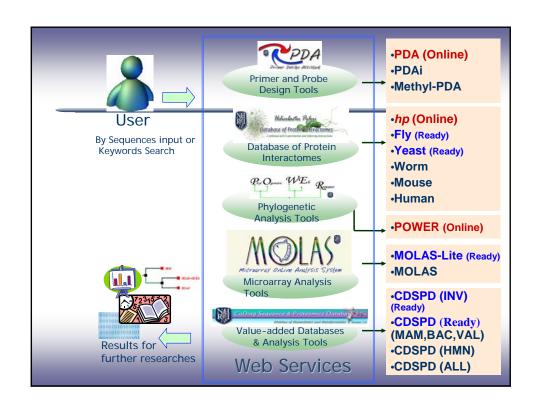



Hybrid Model for Estimation

- Maximized Likelihood Estimation (MLE)
 - To incorporate the global consideration for whole interactimes and the experimental error ignored by local estimate, the likelihood function L is based on all potential protein interactions.

$$L = \prod (\Pr(o_{ij} = 1))^{O_{ij}} (1 - \Pr(o_{ij} = 1))^{1 - O_{ij}}$$





Acknowledgement

Chieh-Hwa Lin Shu-Jun Hsu Chia-Ling Chen Fan-kai Lin Li-Wei Lai **Chao A. Hsiung**

