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The theory of MR

M = Magnetic R = Resonance | = Imaging

Same frequency
Magnetic field direction .

A\

Proton: like a small magnet 1.5T MRI: 63.5 MHz:
Water: 70% of human body 3T MRI: 127 MHz 5



Spatial and temporal scales In
biological systems

Spatial resolution of MRI Organ

< » system and

Atom Protein Cell Tissue Organ organism
1010m 108m 10%m 104 m 102m 10°m
Molecular Metabolism Motility Cell division Development Human
event (ion (diffusion, (cytoskeleton (differentiation, 10°6s lifetime
channel cell signaling)  turnover) migration) 10°%s
gating, 103s 10%s 103s

CataIySiS) ﬁ

106s

Temporal resolution of MRI

- Sporns, “Discovering the Human Connectome,” p6.



Why MRI?

* Non-invasive (safe and no harm)

* Non-radioactive (good for research)

« Adequate spatial and temporal resolution for
Imaging biological tissues (um~mm, ms~s)

« Quantitative physical/physiological contrasts
(spin density, relaxation time, susceptibility,
perfusion, diffusion, flow velocity, temperature,
etc ...)

* From animal to human (good for translational
research)



How the advanced computational
technology changes MRI?

 With the advancement of computational power and
methodology, the development of MRI technology
has been revolutionized during the past few year

DATA :> IMAGE :>
ACQUISITION PROCESSING DATA ANALYSIS

 Faster scan * Undersampled * Multi-modal
 Higher throughput data recon. parametric
« Multi-parametric  Denoising training and
contrast * Resolution model
manipulation enhancement establishment
« Segmentation * Classification

* Prediction

5




Data Acquisition

Magnetic Resonance in Medicine 58:1182-1195 (2007) ﬁ R' | 'IC | |

Sparse MRI: The Application of Compressed Sensing
for Rapid MR Imaging

doi:10.1038/nature11971

Magnetic resonance fingerprinting

: s 1x : 2 1
MlChael Lustlg, DaVId DODOhO’ and ]Ohn M PaUIy Dan Ma', Vikas Gulani"?, Nicole Seiberlich’, Kecheng Liu®, Jeffrey L. Sunshine?, Jeffrey L. Duerk"? & Mark A. Griswold"?

k-space
D Nyquist Low-Res. zero-fill

3 CS
sampling sampling w/dc wavelet + TV

— Signal

Signal intensity (a.u.)

TR index

incoherent artifacts

i
IIII\III

- Lustig et al., Mag Reson Med 2007 - Ma et al., Nature 2013
6

l
|

sparse transform partial k-space




Image Processing

LETTER

doi:[0.70387nature25083

Image reconstruction by domain-transform
manifold learning

Bo Zhu>?, Jeremiah Z. Liu, Stephen F. Cauley"?, Bruce R. Rosen"? & Matthew S. Rosen"?3

b Magnitude

EEN

HNIEREER

FFT reference

EREAPr

NEEAN

NMAESESPENN

mZAENOES=

SECERENRBOE
Image phase (rad)

AERNCS
SRVEERMM

- %
4 2 B
1 i

- Zhu et al., Nature 2018
- Chaudhari et al., Mag Reson Med 2017
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Super-resolution musculoskeletal MRI using deep learning

Akshay S. Chaudhari'-2* | Zhongnan Fang* | Feliks Kogan' | Jeff Wood! |
Kathryn J. Stevens’# | Eric K. Gibbons5 | Jin Hyung Lee?3%7 | Garry E. Gold'2# |

Brian A. Hargreaves!27
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Data Analysis

Neurolmage 101 (2014) 569-582 Neurolmage: Clinical 13 (2017) 361-369

Contents lists available at ScienceDirect Contents lists available at ScienceDirect

Neurolmage Neurolmage: Clinical

journal homepage: www.elsevier.com/locate/ynimg

Hierarchical feature representation and multimodal fusion with deep

learning for AD/MCI diagnosis

* Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, NC, USA
® Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea

Heung-Il Suk ?, Seong-Whan Lee °, Dinggang Shen *>*, the Alzheimer's Disease Neuroimaging Initiative '

journal homepage: www.elsevier.com/locate/ynicl

Deep learning predictions of survival based on MRI in amyotrophic

lateral sclerosis

Hannelore K. van der Burgh?, Ruben Schmidt®, Henk-Jan Westeneng?, Marcel A. de Reus”®,
Leonard H. van den Berg®', Martijn P. van den Heuvel*'

2Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, PO Box 85500, 3508 GA, Utrecht, Netherlands
®Department of Psychiatty, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, PO Box 85500, 3508 GA, Utrecht, Netherlands

Multi-modal Patch Patch-level Image-level
input images extraction feature learning classifier learning (@ clinical characteristics @ structural @ brain
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Table 2

A summary of the performances of two methods. The boldface denotes the best performance in each metric for each classification task.

clinical cha(ac(ensllcs

shont medium long
survival class

Slruc(ural connectivity

perfect classification

Method Modality ACC (%) SEN (%) SPEC (%) BAC (%) PPV (%) NPV (%) AUC (%) ey = senracy =
AD/NC Liu et al. MRI 90.18 + 5.25 91.54 90.61 91.08 88.94 90.67 0.9620 .
PET 89.13 + 6.81 90.06 89.36 89.71 88.49 89.26 09594 -
MRI + PET 90.27 + 7.02 89.48 92.44 90.96 90.56 88.70 0.9655
Proposed MRI 9238 + 532 91.54 9456 93.05 92.65 90.84 0.9697
PET 92.20 + 6.70 88.04 96.33 92.19 95.03 89.66 09798 Y
MRI + PET 9535 + 523 94.65 95.22 94.93 96.80 95.67 0.9877 2 -
MCI/NC Liu et al. MRI 81.00 + 498 97.08 48.18 72.63 79.14 88.99 0.8352 - KR dawoaion
medium  long short medium  long
PET 81.14 £ 10.22 96.03 5259 7431 80.26 84.16 0.8231 ™ o chass true class
MRI + PET 83.90 + 5.80 98.97 5259 75.78 81.18 97.22 0.8301
Proposed MRI 8424 + 626 99.58 53.79 76.69 81.23 9875 08478 ML — e —
PET 8429 + 7.22 98.69 56.87 77.78 81.99 9457 0.8297 02.5% B44%
MRI + PET 85.67 + 522 9537 65.87 80.62 85.02 89.00 0.8808
MCI-C/MCI-NC Liu et al. MRI 64.75 + 14.83 2222 89.57 55.90 46.29 7739 06355 P00
PET 67.17 + 1343 40.02 82.61 61.32 64.13 7031 06911 > predicted class
MRI + PET 73.33 + 1247 3325 97.52 65.38 80.00 73.18 0.7159 - B shot
Proposed MRI 7242 + 13.09 36.70 90.98 63.84 65.49 77.84 07342 B medum
PET 7075 + 13.23 25.45 96.55 61.00 75.00 70.69 0.7215 ? P W g
MRI + PET 75.92 + 1537 48.04 9523 71.63 83.50 7433 0.7466 i T o
lrue class lme class

- Suk et al.

Neurolmage 2014; van der Burgh et al.

Neurolmage: Clinical 2017
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Why Brain Research?

A Challenging Target in 215 Century
(D) e

Brain Research through Advancing Innovative Neurotechnologies
(BRAIN) Initiative

PROJECT  PROGRAMME  HBP COMMUNITY PARTICIPATE WO SUMMITI0TS  NEWS & IVENTS  CONTACTS  COLLABORATION.

THE HUMAN BRAIN PROJECT

CONNECT

A project of the EUFP7 (™
9 i icT)
@ Future and Emerging Technologies (FET)
icr
T TIONS Wi i PROTT U

e The research of “brain and
mind” can help us understand
how brain works and improve
the diagnosis or treatment for
brain diseases

o Non-invasive neuroimaging
technologies can provide
accurate and reproducible
measurements of brain
structures and functlons

cerebraf cdrtex” (1 963‘ ). “\



“Connectome” at Multiple Scales

« Brain connectome can be defined at different levels
of scales, i.e. spatial resolution
» Microscale: cellular level (neurons and synapses)
* Mesoscale: circuits and cell populations
« Macroscale: anatomical regions and pathways

 Structural connectome and functional connectome
(Sporns et al., 2005; Biswal et al., 2010; Bullmore and Sporns, 2009)

Measurement Edge Empirical
representation techniques
Structural Presence/absen Tract tracing,
connectivity ce of physical diffusion MR,
links anatomical MRI
Functional Statistical Neurophysiological
connectivity relationships recordings,

between neural EEG/MEG, BOLD
time courses fMRI




What is a “Network”?

o Airwa

Electricity

= Social

Two Important issues:
- How these nodes connect (structural connectivity)
- What happens between nodes (functional connectivity)

12



Node and Edge for representing
a Brain Network

Node —
Anatomical regions
Q Edge —

Structural connectivity
/ Functional connectivity
® The basic concept is to
compute nodes/edges
S from MRI data and

measure the network
characteristics of brain

13



How do we define the
nodes of a brain network?



To define the “Nodes”

* Network "nodes” can be represented by a group
of cortical parcellations

« These cortical parcellations can be obtained by
the following constraints
— Anatomical regions
— Structural connections
— Functional connectivity ./



We can easily get the “Nodes”™
from a brain anatomical atlas
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How do we measure the
structural connectivity?



Diffusion phenomena

Microscopic random motion, i.e. Brownian motion

To measure diffusion using MRI

- Pulsed gradient spin echo (PGSE) Ax = ’\/2DAt

- Stejskal and Tanner, 1965
- Diffusion-weighted imaging (DWI)

\
- Wesbey et al., 1984 \ AX
- Diffusion tensor imaging (DTI) \
- Basser et al., 1994 b

- Diffusion spectrum imaging (DSI)
- Wedeen et al., 2000



Diffusion anisotropy in biological
tissue, e.g. neural fibers

)
o

=
3

£ ‘W l r;,

di H it I jq. S 60
I

Al il! 1N é

CE 106 ms 900 ms
o u Sqrt (Diffusion time)
D|;=1.2x10°mm?/s

_ -3 2
DJ_ = 0.4 x 10° mm?/s - Douek et al., JCAT 1991




Diffusion Tensor MRI (DTI)

* A widely used diffusion MRI approach to map the

fiber orientations and white matter integrity (Basser et al.,
Biophys J 1994)

DTl ellipsoid ntap

A 0 0
0 A4 0
0 0 A

D, D, D,
D\'\ D\'\ D\'.'
DT X l);'\ l):f.

D 0 0
0 D 0

0 0 D

DTI models the intravoxel fibers

as a diffusion ellipsoid B



DTI quantitative indices

- These measures can represent the white matter integrity

Colormap of
trADC FA 15t eigenvector

- Hagmann et al., RadioGraphics 2006
21



Diffusion MRI Fiber Tracking

Whole Brain Tracts Corticospinal Tract

22



How do we measure the
functional connectivity?



BOLD Functional MRI

Task-based fMRI

Frontal lobe Parietal lobe
Planning/reasoning, Recognising scnsaﬂons “
problem-solving, and body position, 4

recognising objects,

spatial judgements, 2 ._I\
understanding time. [V g b
Occipital lobe = 2

Integrating and . i
processing visual *

information (colour,

shape, distance).

recognising and
regulating emotion,
social skills.

Temporal lobe
Understanding language,
processing auditory
information, organising

information, memory, Brain stem Cerebellum
leaming. Regulates breathing, Controls balance and

:::z l:(v: elcl;aeb:(re muscle co-ordination .

H X *7‘ *: R XK) *: ‘: ‘:
e.g. Visual fMRI
1. Neuronal activation 2.Extracting “fuel” 3.Blood “flood” .
e Resting-state fMRI
. . >
Neuron Neuron Neuron - No functional stimulus
2

GIucose Iucose

Capillary

- fMRI: functional MRI
- BOLD contrast: blood-oxygenation-level-
dependent contrast

Sensorimotor

Auditory

ONEEESS 7
-Zhang and Raichle, -,
Nat. Rev. Neuro., 2010




Resting-state fMRI: first evidence

RS-fMRI: not just noise

- Biswal et al., MRM 1995

25



Clinical applications with RS-fMRI

The resting human brain:

represents 2% of total body mass but consumes 20% of the body’s energy

Healthy EIderIy Vs. AIzhelmer s Disease (AD)
(Greicius et al., PNAS 2004) @

(b)

Healthy control vs. Autism ety
(Cherkassky et al., NeuroReport 2006) &=/

Depressed Subjects

4

1)

»t

Control Subjects

.

-

Depressed > Control

Healthy control vs. Depression
(Greicius et al., Biol Psychiatry 2007)

26



Computational approaches.

Now we have nodes and
edges.

How to analyze the brain
network with graph theory?




Graph Theoretical Analysis of a
Brain Network

(a) MRI Data Acquisition (b) Data Reconstruction (c) Network Analysis
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community structure — modules and hubs

- Cho et al., INSNE 2013



Characteristics of a network

Weighted vs. Unweighted
Directed vs. Undirected

Binarized

weighted directed networks
structural datasets: tract tracing

effective datasets: inference of causality

from functional data

iu

N=OORXNDIUNEWN -
I

1

|
binarize

l

weighted undirected networks
structural datasets: diffusion MRI, structural MRI
functional datasets: functional MRI, MEG, EEG

10}

symmetrize threshold

binary directed networks
T

weighted undirected networks

symmetrize

T
|
1 Q
1 EE
binarize

-

binary undirected networks

T

T

- Rubinov and Sporns, Neurolmage 52 (2010) 1059
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Some simple network measures

(a) (b)

(a) Degree: the degree of node Ais 4

(b) Shortest path length: the shortest path length between A and Bis 5

(c) Clustering coefficient: the clustering coefficient of node A is 5/6 ([# of
connections / # of max connections] between all neighbor nodes)



Brain Network in development

DEGREE Centrality

BETWEENNESS Centrality
A Zae\ | Bz % '

A Foain N\ 4 5. B
/ \ ’

To investigate
infants’ brain
network using
resting-state fMRI,
the results show the
centrality is higher in
primary cortex
regions to support
early development

- Fransson et al.,

Cerebral Cortex 2011
31



Network Centrality vs. A3 deposition

The mappings of network centrality and A8 deposition show a similar
pattern in several areas including posterior cingulate cortex, precuneus,
inferior parietal lobe and medial frontal cortex

A Cortical hubs B Amyloid B deposition

- Buckner et al., J neurosci, 2009
32



Training vs. Brain Network

a b

30

C

Ko

s

>

()]

o

°

[0

[®]

@ .30
c

A
MTWTFSS

MRI1 — train 1

3 week 1

‘ ............... train 2 ek

MRI2 — train 3 week 3
v

................. train 4 week 4

Training experiments

Week 1

Week 6

- Taubert et al., Neuroimage 2011
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0 4

right vPMC

control fMRI fMRI fMRI
“group 2 3 4

% signal change to baseline centrality (fMRI1)
o

e

Structure-centrality f Grey matter structure

correlation

B LT S
y=12

Increase of Network Centrality
bilateral supplementary/pre-supplementary motor and
right ventral premotor areas
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Application Example:
Brain Network Analysis using
Graph Theory on Dementia



Preface

 Patients suffering from Alzheimer’s disease (AD) are often
diagnosed after progressively altered behavior, which are
difficult to distinguish from the symptoms of mild cognitive
impairment (MCI).

 Neuroimaging approaches provides anatomical, functional
and metabolic information non-invasively and have been
considered as promising tools to improve the diagnosis of AD.

« Brain network analysis utilizing graph theory could be
potentially helpful to distinguish AD from MCI or even early
aging. A joint development with machine learning approach for
classification is also emergently needed.



Dementia research team at NHRI

Or. Chih-Cheng Hs . PET/MR
Epidemiological multimodality
cohort strategy imaging markers

strategy

Develop an integrated
biomarker platform for early
diagnosis of Alzheimer's disease

miRNAs involved
YU AN € in Eoftaxin
Eotaxin relating il expression or T
pathway strategy cell activation
strategy




Materials and Methods

> Patient recruitment

® All the clinical assessments and experiments were performed in Dalin
Tzu-Chi Hospital. A total of 71 subjects were recruited in MR study,
including 26 healthy control subjects (HC), 22 MCI and 23 AD.

»MR experiments

® All MR experiments were performed on a 1.5T MRI scanner (HDxt, GE,
USA). For brain functional network, we acquired 3D T1-weigthed images
and resting-state functional MRI data. For structural network, we
acquired DTI data with 30 gradient directions (b = 1000 s/mm?).

»Analysis approaches

® |n this study, we incorporated both statistical and machine-learning
approaches on brain network measures to investigate the functional
alterations of brain in AD and aimed to establish a useful framework for
classifying HC, MCI and AD.



Brain Functional

RS-fMRI

Network Analysis

Healthy

How to define NODE from MRI

MCI

DTI cFA & Tracks
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Build a deep neural network model

In this work, we aimed to establish a
classification model based on brain network
analysis and deep neural network

The classification accuracies using different types
of functional connectivity were compared

I T
Hoid g
1 LLL h.- -'-:-'
. "r:'"::"i".-'.'i"' i

- o B 11

Connectivity Network Analysis Deep Neural Network
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Comparison of functional connectivity
on classification accuracy

« Normalized fMRI time series (across 90 AAL regions) was used for
functional connectivity calculation

 Pearson’s correlation, covariance, normalized mutual
iInformation (NMI) and GSP graph learning
« Connectivity matrix sparsification

 For Pearson’s, covariance and NMI, the sparsification
range is [0.1 0.3]

 For GSP, no sparsification is needed
 Four kinds of network measures were used as features in training
model

 Nodal degree, clustering coefficient, local efficiency,
pagerank centrality



Graph Signal Representations In
Spectral Domains

« The Graph Fourier Transform can be defined on the vertices of a
graph and represent graph signals on spectral domain

N-1

-~

Frg = u) = foui@. £ =Y FAdu).
i=1

0=0

—_

0 1 2 3 4 5 b
Ae

Spectral domain

A graph on vertex domain and its corresponding
spectrum domain (Shuman et al., 2013)
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Graph Signal Processing

« Relationship between eigenvectors and frequency

» Eigenvectors associated with small eigenvalues indicate the
signals vary slowly across the graph

« Eigenvectors associated with large eigenvalues indicate the
signals oscillate rapidly and are more likely to have dissimilar
values on adjacent vertices

In our work, we utilize graph
learning technique
(Kalofolias et al., AISTATS
2016) to process the
functional connectivity
matrix by maximizing
smoothness of signals on
the graph

Correlation
Covariance

NMI
Graph learning




Classification of HC/MCI/AD using
deep neural network

Graph Learning

Input features

NMI

Dropout layer (p=50%) Covariance

Pearson correlation

o

0.1 0.2 0.3 0.4 0.5 0.6 0.7

B Accuracy  H®Kendall Rank Correlation

OquuT Iuver (Imear)

Connectivity | Pearson Covariance Graph
PredICTIOH (choose max) COTT. learning

Architecture of the Classifier Accuracy 043 | 0.6l

Implemented using TensorFlow

Google’s TensorFlow™ -Linetal., ISMRM’17 43




Summary

* The Al has significantly changed the development of
medical imaging instrumentations during the past few
years. More coming in future!

v Although potentially useful, its reliability and validity on clinical
use still needs further investigation

« Graph theoretical analysis could be potentially useful in
identifying altered network topologies of brain
structures and functions

v Ajoint development with deep learning is highly expected

- "Data” is the “key”: to enhance the data quality by
building a high-performance dedicated brain MRI



A high-performance dedicated
brain 3T MRI at NHRI

TR/TE = 2000/45
ms; Spatial
resolution = 0.4
x 0.4 mm?; Slice
thickness = 2
mm; Averages =
16

= (©)
=

Data acquisition

3T magnet ( D)

Human-scale
gradient (150 mT/m)

(B)

Animal-scale 1
gradient (675 mT/m) Animal-scale gradient Slice I, 3 mm Slice I, 3 mm
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