

Exploring Human Brain Networks with Advanced MR Neuroimaging Technology

Li-Wei Kuo

Institute of Biomedical Engineering and Nanomedicine (I-BEN), National Health Research Institutes (NHRI)

2018/6/27@BDHS

The theory of MRI

M = Magnetic R = Resonance I = Imaging

Magnetic field direction

Proton: like a small magnet Water: 70% of human body

1.5T MRI: 63.5 MHz; 3T MRI: 127 MHz

Spatial and temporal scales in biological systems

- Sporns, "Discovering the Human Connectome," p6.

Why MRI?

- Non-invasive (safe and no harm)
- Non-radioactive (good for research)
- Adequate spatial and temporal resolution for imaging biological tissues (µm~mm, ms~s)
- Quantitative physical/physiological contrasts (*spin density, relaxation time, susceptibility, perfusion, diffusion, flow velocity, temperature, etc ...*)
- From animal to human (good for translational research)

How the advanced computational technology changes MRI?

 With the advancement of computational power and methodology, the development of MRI technology has been revolutionized during the past few year

 Multi-parametric contrast manipulation

- Denoising
- Resolution enhancement
- Segmentation

 Prediction 5

establishment

Classification

model

Data Acquisition

Magnetic Resonance in Medicine 58:1182-1195 (2007)

Sparse MRI: The Application of Compressed Sensing for Rapid MR Imaging

Michael Lustig,^{1*} David Donoho,² and John M. Pauly¹

ARTICLE

doi:10.1038/nature11971

Magnetic resonance fingerprinting

Dan Ma¹, Vikas Gulani^{1,2}, Nicole Seiberlich¹, Kecheng Liu³, Jeffrey L. Sunshine², Jeffrey L. Duerk^{1,2} & Mark A. Griswold^{1,2}

- Lustig et al., Mag Reson Med 2007

- Ma et al., Nature 2013

Image Processing

LETTER

doi:10.1038/nature25988

Image reconstruction by domain-transform manifold learning

Bo Zhu^{1,2,3}, Jeremiah Z. Liu⁴, Stephen F. Cauley^{1,2}, Bruce R. Rosen^{1,2} & Matthew S. Rosen^{1,2,3}

- Zhu et al., Nature 2018

- Chaudhari et al., Mag Reson Med 2017

Received: 16 December 2017 Revised: 14 February 2018 Accepted: 22 February 2018

DOI: 10.1002/mm.27178

FULL PAPER

Magnetic Resonance in Medicine

Super-resolution musculoskeletal MRI using deep learning

Data Analysis

NeuroImage 101 (2014) 569–582

NeuroImage

Reurolmage

CrossMark

Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis

Heung-II Suk ^a, Seong-Whan Lee ^b, Dinggang Shen ^{a,b,*}, the Alzheimer's Disease Neuroimaging Initiative ¹ ^a Department of Radiology and Biomedical Research Imaging Center (BRIC). University of North Carolina at Chapel Hill, NC, USA ^b Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Kora

Table 2

A summary of the performances of two methods. The boldface denotes the best performance in each metric for each classification task.

	Method	Modality	ACC (%)	SEN (%)	SPEC (%)	BAC (%)	PPV (%)	NPV (%)	AUC (%)
AD/NC	Liu et al.	MRI	90.18 ± 5.25	91.54	90.61	91.08	88.94	90.67	0.9620
		PET	89.13 ± 6.81	90.06	89.36	89.71	88.49	89.26	0.9594
		MRI + PET	90.27 ± 7.02	89.48	92.44	90.96	90.56	88.70	0.9655
	Proposed	MRI	92.38 ± 5.32	91.54	94.56	93.05	92.65	90.84	0.9697
		PET	92.20 ± 6.70	88.04	96.33	92.19	95.03	89.66	0.9798
		MRI + PET	95.35 ± 5.23	94.65	95.22	94.93	96.80	95.67	0.9877
MCI/NC	Liu et al.	MRI	81.00 ± 4.98	97.08	48.18	72.63	79.14	88.99	0.8352
		PET	81.14 ± 10.22	96.03	52.59	74.31	80.26	84.16	0.8231
		MRI + PET	83.90 ± 5.80	98.97	52.59	75.78	81.18	97.22	0.8301
	Proposed	MRI	84.24 ± 6.26	99.58	53.79	76.69	81.23	98.75	0.8478
		PET	84.29 ± 7.22	98.69	56.87	77.78	81.99	94.57	0.8297
		MRI + PET	85.67 ± 5.22	95.37	65.87	80.62	85.02	89.00	0.8808
MCI-C/MCI-NC	Liu et al.	MRI	64.75 ± 14.83	22.22	89.57	55.90	46.29	77.39	0.6355
		PET	67.17 ± 13.43	40.02	82.61	61.32	64.13	70.31	0.6911
		MRI + PET	73.33 ± 12.47	33.25	97.52	65.38	80.00	73.18	0.7159
	Proposed	MRI	72.42 ± 13.09	36.70	90.98	63.84	65.49	77.84	0.7342
		PET	70.75 ± 13.23	25.45	96.55	61.00	75.00	70.69	0.7215
		MRI + PET	75.92 ± 15.37	48.04	95.23	71.63	83.50	74.33	0.7466

NeuroImage: Clinical 13 (2017) 361-369

Deep learning predictions of survival based on MRI in amyotrophic lateral sclerosis

Hannelore K. van der Burgh^a, Ruben Schmidt^a, Henk-Jan Westeneng^a, Marcel A. de Reus^b, Leonard H. van den Berg^{a,1}, Martijn P. van den Heuvel^{b,a,1}

³Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, PO Box 85500, 3508 GA, Utrecht, Netherlands ^bDepartment of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Heidelberglaan 100, PO Box 85500, 3508 GA, Utrecht, Netherlands

- Suk et al., NeuroImage 2014; van der Burgh et al., NeuroImage: Clinical 2017

CrossMark

Why Brain Research?

A Challenging Target in 21st Century

- The research of "brain and mind" can help us understand how brain works and improve the diagnosis or treatment for brain diseases
- Non-invasive neuroimaging technologies can provide accurate and reproducible measurements of brain structures and functions

"Connectome" at Multiple Scales

- Brain connectome can be defined at different levels of scales, i.e. spatial resolution
 - Microscale: cellular level (neurons and synapses)
 - Mesoscale: circuits and cell populations
 - Macroscale: anatomical regions and pathways
- Structural connectome and functional connectome (Sporns et al., 2005; Biswal et al., 2010; Bullmore and Sporns, 2009)

Measurement	Edge representation	Empirical techniques
Structural connectivity	Presence/absen ce of physical links	Tract tracing, diffusion MRI, anatomical MRI
Functional connectivity	<i>Statistical relationships between neural time courses</i>	Neurophysiological recordings, EEG/MEG, BOLD fMRI 11

What is a "Network"?

Two important issues:

- How these nodes connect (structural connectivity)
- What happens between nodes (functional connectivity)

Node and **Edge** for representing a Brain Network

Node –

Anatomical regions Edge – Structural connectivity

Functional connectivity

The basic concept is to compute nodes/edges from MRI data and measure the network characteristics of brain

How do we define the nodes of a brain network?

To define the "Nodes"

- Network "nodes" can be represented by a group of cortical parcellations
- These cortical parcellations can be obtained by the following constraints
 - Anatomical regions
 - Structural connections
 - Functional connectivity

We can easily get the "Nodes" from a brain anatomical atlas

How do we measure the structural connectivity?

Diffusion phenomena

Microscopic random motion, i.e. Brownian motion

To measure diffusion using MRI

- Pulsed gradient spin echo (PGSE)

- Stejskal and Tanner, 1965
- Diffusion-weighted imaging (DWI)
 - Wesbey et al., 1984
- Diffusion tensor imaging (DTI)
 - Basser et al., 1994
- Diffusion spectrum imaging (DSI)
 - Wedeen et al., 2000

Diffusion anisotropy in biological tissue, e.g. neural fibers

Diffusion Tensor MRI (DTI)

• A widely used diffusion MRI approach to map the fiber orientations and white matter integrity (Basser et al., Biophys J 1994)

DTI models the intravoxel fibers as a diffusion ellipsoid

DTI quantitative indices

- These measures can represent the white matter integrity

- Hagmann et al., RadioGraphics 2006

Diffusion MRI Fiber Tracking

Whole Brain Tracts

Corticospinal Tract

How do we measure the functional connectivity?

BOLD Functional MRI

- BOLD contrast: blood-oxygenation-leveldependent contrast

Areas of the brain (side view)

- Zhang and Raichle, 24 Nat. Rev. Neuro., 2010 Dorsal

attentio

Resting-state fMRI: first evidence

RS-fMRI: not just noise

- Biswal et al., MRM 1995

Clinical applications with RS-fMRI

The resting human brain:

represents 2% of total body mass but consumes 20% of the body's energy

Healthy Elderly vs. Alzheimer's Disease (AD) (Greicius et al., PNAS 2004)

Healthy control vs. Autism (*Cherkassky et al., NeuroReport 2006*)

Healthy control vs. Depression (Greicius et al., Biol Psychiatry 2007)

Computational approaches.

Now we have nodes and edges.

How to analyze the brain network with graph theory?

Graph Theoretical Analysis of a **Brain Network**

Derive network properties with graph theory analysis

community structure - modules and hubs

Define "Connectivity" between different cortical regions -Fiber numbers -Fiber density -Fiber length -Anisotropy -Diffusivity

- Cho et al., JNSNE 2013

Characteristics of a network

Weighted vs. Unweighted

Directed vs. Undirected

Binarized

- Rubinov and Sporns, NeuroImage 52 (2010) 1059

Some simple network measures

- (a) Degree: the degree of node A is 4
- (b) Shortest path length: the shortest path length between A and B is 5
- (c) Clustering coefficient: the clustering coefficient of node A is 5/6 ([# of connections / # of max connections] between all neighbor nodes)

Brain Network in development

BETWEENNESS Centrality

To investigate infants' brain network using resting-state fMRI, the results show the centrality is higher in primary cortex regions to support early development

- Fransson et al., Cerebral Cortex 2011

Network Centrality vs. Aß deposition

The mappings of network centrality and A6 deposition show a similar pattern in several areas including posterior cingulate cortex, precuneus, inferior parietal lobe and medial frontal cortex

- Buckner et al., J neurosci, 2009

Training vs. Brain Network

bilateral supplementary/pre-supplementary motor and right ventral premotor areas

- Taubert et al., Neuroimage 2011

Application Example: Brain Network Analysis using Graph Theory on Dementia

Preface

- Patients suffering from Alzheimer's disease (AD) are often diagnosed after progressively altered behavior, which are difficult to distinguish from the symptoms of mild cognitive impairment (MCI).
- Neuroimaging approaches provides anatomical, functional and metabolic information non-invasively and have been considered as promising tools to improve the diagnosis of AD.
- Brain network analysis utilizing graph theory could be potentially helpful to distinguish AD from MCI or even early aging. A joint development with machine learning approach for classification is also emergently needed.

Dementia research team at NHRI

Dr. Chih-ChengHsu Epidemiological cohort strategy 國家新創獎 國家生技際疫品 聯合頒獎

> Drs. Jen-Kun Chen and Li-Wei Kuo PET/MR multimodality imaging markers strategy

Develop an integrated biomarker platform for early diagnosis of Alzheimer's disease

Drs. Yu-Li Liu and Yun Wang *Eotaxin*-relating pathway strategy

Dr. Jyh-Lyh Juang miRNAs involved in *Eotaxin* expression or T cell activation strategy

Materials and Methods

Patient recruitment

 All the clinical assessments and experiments were performed in Dalin Tzu-Chi Hospital. A total of **71** subjects were recruited in MR study, including **26** healthy control subjects (HC), **22** MCI and **23** AD.

≻MR experiments

All MR experiments were performed on a 1.5T MRI scanner (HDxt, GE, USA). For brain functional network, we acquired 3D T1-weigthed images and resting-state functional MRI data. For structural network, we acquired DTI data with 30 gradient directions (b = 1000 s/mm²).

Analysis approaches

 In this study, we incorporated both statistical and machine-learning approaches on brain network measures to investigate the functional alterations of brain in AD and aimed to establish a useful framework for classifying HC, MCI and AD.

Build a deep neural network model

- In this work, we aimed to establish a classification model based on brain network analysis and deep neural network
- The classification accuracies using different types of functional connectivity were compared

Comparison of functional connectivity on classification accuracy

- Normalized fMRI time series (across 90 AAL regions) was used for functional connectivity calculation
 - Pearson's correlation, covariance, normalized mutual information (NMI) and GSP graph learning
- Connectivity matrix sparsification
 - For Pearson's, covariance and NMI, the sparsification range is [0.1 0.3]
 - For GSP, no sparsification is needed
- Four kinds of network measures were used as features in training model
 - Nodal degree, clustering coefficient, local efficiency, pagerank centrality

Graph Signal Representations in Spectral Domains

 The Graph Fourier Transform can be defined on the vertices of a graph and represent graph signals on spectral domain

$$\hat{f}(\lambda_{\ell}) := \langle \mathbf{f}, \mathbf{u}_{\ell} \rangle = \sum_{i=1}^{N} f(i) u_{\ell}^{*}(i). \quad f(i) = \sum_{\ell=0}^{N-1} \hat{f}(\lambda_{\ell}) u_{\ell}(i).$$

A graph on vertex domain and its corresponding spectrum domain (Shuman et al., 2013)

Graph Signal Processing

- Relationship between eigenvectors and frequency
 - Eigenvectors associated with small eigenvalues indicate the signals vary slowly across the graph
 - Eigenvectors associated with large eigenvalues indicate the signals oscillate rapidly and are more likely to have dissimilar values on adjacent vertices

In our work, we utilize graph learning technique (Kalofolias et al., AISTATS 2016) to process the functional connectivity matrix by maximizing smoothness of signals on the graph

Classification of HC/MCI/AD using deep neural network

Architecture of the Classifier Implemented using TensorFlow

d using TensorFlow

Google's TensorFlow[™]

- Lin et al., ISMRM'17

Connectivity	Pearson corr.	Covariance	NMI	Graph learning
Accuracy	0.4	0.44	0.43	0.61

Summary

- The AI has significantly changed the development of medical imaging instrumentations during the past few years. More coming in future!
 - Although potentially useful, its reliability and validity on clinical use still needs further investigation
- Graph theoretical analysis could be potentially useful in identifying altered network topologies of brain structures and functions

✓ A joint development with deep learning is highly expected

• "Data" is the "key": to enhance the data quality by building a *high-performance dedicated brain MRI*

A high-performance dedicated brain 3T MRI at NHRI

Acknowledgements

We greatly thank for the financial supports from NHRI, MOST, MOHW and MOEA