

Stochastic Model for Overdiagnosis in Disease Screening and Surveillance

Dr. Amy Ming-Fang Yen

School of Oral Hygiene, College of Oral Medicine, Taipei Medical University

Professor Hsiu-Hsi Chen

Division of Biostatistics, College of Public Health, National Taiwan University

2018/06/27

Meta-analyses: UK Independent

The benefits and harms of breast cancer screening: an independent review

Ŵ

Independent UK Panel on Breast Cancer Screening*

2012 Lancet

"overdiagnosed".

Almost one-third of women are at a higher risk of developing breast cancer and should be screened more than once every three years, a study says.

SECTIONS

HOME Q SEARCH

The New York Times

SUBSCRIBE NOW

OP-ED CONTRIBUTOR When Work Loses Its Dignity EDITORIAL Donald Trump's Tangled Web

GAIL COLLINS A Trumpian Silver Lining

NICHOLAS KRISTOF A 12-Step Program for Responding to President-Elect Trump PAID POST: SOTHEBY'S REALTY 3 Ski Homes You'll Never Want to Come Down From

LOG IN

The Opinion Pages | OP-ED CONTRIBUTOR

Cancer Survivor or Victim of Overdiagnosis?

By H. GILBERT WELCH NOV. 21, 2012

Hanover, N.H.

FOR decades women have been told that one of the most important things they can do to protect their health is to have regular <u>mammograms</u>. But over the past few years, it's become increasingly clear that these screenings are not all they're cracked up to be. The latest piece of evidence appears in a study in Wednesday's <u>New England</u> <u>Journal of Medicine</u>, conducted by the oncologist Archie Bleyer and me.

The study looks at the big picture, the effect of three decades of mammography screening in the United States. After correcting for underlying trends and the use of hormone replacement therapy, we found that the introduction of screening has been associated with about 1.5 million additional women receiving a diagnosis of early stage <u>breast</u> cancer. Ď

Fallacy in BC mass screening

2. Breast Cancer mixed: diagnosed before screening

1. Short follow-up time: without lead-time consideration

Norwegian Study

2008;168:2311-2316

Survival of Breast Cancer, Darlana, Sweden

	aRR (95% CI)	P value
Tumor size, mm		<0.001
10-14 vs. 1-9	1.01 (0.45 to 2.24)	
15-19 vs. 1-9	1.12 (0.52 to 2.43)	
20-29 vs. 1-9	2.63 (1.38 to 5.02)	
30+ vs. 1-9	2.39 (1.19 to 4.80)	
Node (+) vs (-)	1.86 (1.18 to 2.94)	0.007
Grade 3 vs. 1/2	1.32 (0.84 to 2.07)	0.228
Triple negative Yes vs. No	1.53 (0.89 to 2.63)	0.132
Surgery MA vs. BCS	2.79 (1.56 to 4.98)	<0.001
Chemotherapy Yes vs. no	0.83 (0.51 to 1.38)	0.474
Radiotherapy Yes vs. no	1.39 (0.82 to 2.37)	0.215
Tamoxifen Yes vs. no	0.89 (0.56 to 1.42)	0.633

Abbreviations: aRR: adjusted relative risk; cRR: crude relative risk; df.: degree of freedom;

MA: Mastectomy; BCS: Breast-conserving surgery

Without consideration of over-diagnosis

Zero-inflated Poisson regression model and overdiagnosis rate

Variable	RR/OR (95% Cl)	P-value				
Count part	RR					
Intercept						
Size, mm		0.015				
10-14 vs. 1-9	3.69(0.76-18.01)					
15-19 vs. 1-9	3.85(0.80-18.53)					
20-29 vs. 1-9	10.26(2.27-46.33)					
30+ vs. 1-9	9.45(2.01-44.49)					
Node (+) vs. (-)	2.40(1.30-4.45)	0.005				
Grade 3 vs 1/2	1.62(0.94-2.79)	0.080				
Surgery MA vs. BCS	1.92(0.95-3.88)	0.071				
Triple Negative Yes vs No	2.49(1.36-4.59)	0.003				
Chemotherapy Yes vs. No	0.79(0.42-1.47)	0.456				
Radiotherapy Yes vs. No	1.23(0.60-2.53)	0.568				
Tamoxifen Yes vs. No 0.95(0.94-1.64) 0.847						
Zero part	OR					
Intercept						
Detection mode		0.041				
SD vs. RF	2.38(0.97-5.85)					
IC vs. RF 1.23(0.48-3.17)						
π = 56.14% SD: 66.4% ↑ Overdiagnosis, 8.9% IC: 50.5% ↑ Awareness, 2.9% RE: 45.4% → Treatment effect						

QUANTIFY THE PROPORTION OF OVERDIAGNOSIS DETERMINISTIC APPROACH

Natural disease progression and overdiagnosis

Curved method by comparing cumulative incidence of cancer

Upper limit All overdetetion arise from Non-advanced cancer (Long follow up time)

Lower limit All detected cancer became advanced cancer(no overdetection)

11

Assessing overdetection in breast cancer screening using data on randomized controlled trial

Chen et al.,2017 Medicine

The estimated results of over-detection and number needed to screen for one over-detected case in the population-based screening for breast cancer with mammography.

	Womer	n-years		Invasiv	e breast	cancer ca	ises	Absolute rate of over-detection (per 10 ³)		Absolute rate of over-detection (per 10 ³) NSO		٦.	Perc over		ige of ection	
Trials	Study	Control	Study	Control	Study, adv	Control, adv	(Adv breast cancer)	Low	High	Average	Low [*]	High	Average	Low (%)	High (%)	Averag (%)
HIP	179,472	180,816	334	352	162	200	Stage 2+	-0.09	0.76	0.34	0	1323	2983	1.4	39.1	17.5
Malmo	185,983	186,674	486	396	190	231	Stage 2+	0.49	1.38	0.93	727	2036	1072	23.5	65.1	44.3
Two-county	652,706	476,864	1303	996	524	555	Stage 2+	-0.09	0.83	0.37	0	1201	2703	0.3	40.0	17.8
Edinburg	157,946	147,854	355	261	228	221	Stage 2+	0.48	0.75	0.62	1331	2079	1623	27.7	43.1	35.4
CNBSS-1	124.621	124.943	286	232	96	63	Nodes +	0.44	1.79	1.11	558	2284	898	24.1	97.0	60.5
CNBSS-2	96,626	97,061	341	274	92	86	Nodes +	0.71	2.64	1.68	379	1415	597	25.5	94.1	59.8
Stockholm	201.590	99.715	385	203	172	97	Stage 2+	-0.13	0.94	0.41	0	1068	2468	1.2	46.5	20.4
Gothenburg, 39–49	81,750	99,335	124	184	39	73	Nodes +	-0.33	0.78	0.22	0	1280	4482	0.2	42.6	12.5
Gothenburg, 40-59	49.564	78.369	147	231	46	71	Nodes +	0.02	2.06	1.04	486	51813	962	4.8	70.3	35.7
Age trial Overall	312,957	622,127	409	755	124	276	Nodes +	0.09 0.19	0.86 1.21	0.48 0.70	1158	10595	2087	8.3 9.9	71.3 62.4	39.6

HIP=Health Insurance Plan, NSO=number of screenee required for over-detecting.

* The low estimate of NSO is truncated to 0 while the absolute rate is negative.

QUANTIFY THE PROPORTION OF OVERDIAGNOSIS STOCHASTIC APPROACH

STOCHASTIC APPROACHES FOR OVERDIAGNOSIS

Progressive Markov Model
 Coxian Phase-Type Markov Process
 Mover-Stayer Model

Progressive Markov Model

Estimated results on the transition rates of CRC based on three-state Markov model

Parameters	UK (Nottingham)	Demark (Funen)	Taiwan	
Incidence rate	0.00147	0.00172	0.00096	
(Normal→PCDP) (per person-year)	(0.00136, 0.00159)	(0.00155, 0.00189)	(0.00085, 0.00107)	
Progression rate	0.3475	0.4433	0.1858	
(PCDP →Clinical) (per year)	(0.2437, 0.4513)	(0.3226, 0.5639)	(0.0488, 0.7068)	
Sensitivity of PCDP CRC	53.40%	52.05%	82.23%	
	(34.26%, 69.55%)	(35.53%, 68.56%)	(46.82%, 96.05%)	

*CRC: colorectal cancer PCDP: pre-clinical detectable phase

Estimated results on standardized Over-detection ratio (SOR) based on the three-state Markov model and expected and observed frequencies of colorectal cancer for control group.

Study	Expected CRC, C(t)	Observed CRC, D(t)	SOR (%) (95% CI)
Nottingham, UK	931.26	856	8.79%(8.28,9.65)
Funen, Denmark	528.06	483	9.33%(8.81,10.20)
Taiwan	3656.63	3416	7.05%(6.56,7.89)

Coxian Phase-Type Markov Process

Estimated natural history of breast cancer with and without consideration of over-detection, Swedish Two-County Trial (Kopparberg) 1977-1985

Parameters	With consideration of over- detection Estimate 95% CI		Without	f			
			ove				
			Estimate	95% CI			
No detectable disease	→ progres	sive PCDP (λ_1^P)					
	0. 00287	0.002677 - 0.003054	0.00293	0.002757-0	.00310	15	
No detectable disease	→ non-pro	gressive PCDP (λ_1^{NP})					
	0.000017	0.000005 - 0.000057					
Progressive PCDP →C	P (α_1^P)				→	$\pi^{0} = 2$.6%
α_1^P	0.4189	0.3606 - 0.4772	0.3960	0.3467-0	.4453		
MST (years)	2.39	2.10 - 2.77	2.53	2.25-2	.88		
Sensitivity ($S_{q^P} = S_{q^{NP}}$)	82.6%	75.6 % - 89.5 %	83.1%	76.5%-8	9.7 %		
-2 log-likelihood	19325		19327				

Mover-Stayer Model for Over-detection

(A)

(B)

Fig. Diagrams of Markov models of natural history and prognosis of prostate cancer for lead-time, length bias, and overdetection adjustment.

- (A) A Markov model combining the natural history and prognosis of prostate cancer. The model is also the same with the one for the progressive prostate cancer, "mover".
- (B) A Markov model for the nonprogressive prostate cancer, "stayer". White arrows denote the direct observation from the follow-up. Dotted arrows denote the unobserved transitions which decomposed the observed survival time into lead-time and post-lead-time survival time. OST: observed survival time; LT: lead-time; PST: post lead-time survival time.

Estimated progression rates (per year) of prostate cancer cases, adjusted for both lead time and length bias, Finnish randomized controlled trial, 1996–2005.

Parameters	Estimate	95% CI ^{a)}
Extended model with over-detection adjustment ^{b)}		
The proportion of stayer	40.45%	31.95-48.95%
Pre-clinical incidence rate (λ_0) (Piecewise)		
$55-58 \text{ y/o} (\lambda_{01})$	0.0009	0.0006-0.0013
$59-62 \text{ y/o} (\lambda_{02})$	0.0047	0.0040 - 0.0054
$63-66 \text{ y/o} (\lambda_{03})$	0.0069	0.0059 - 0.0078
$67 + y/o (\lambda_{04})$	0.0119	0.0108 - 0.0130
Annual progression rate (λ_1) (Piecewise)		
$55-62 \text{ y/o} (\lambda_{11}, \lambda_{12})$	0.1376	0.0964 - 0.1787
$63 + y/o (\lambda_{13}, \lambda_{14})$	0.1340	0.1110-0.1570
Rate of prostate cancer death (λ_2) (Weibull)		
Scale (λ_{20})	2.01×10^{-5}	$2.19 \times 10^{-8} - 4.02 \times 10^{-5}$
Shape (γ_2)	2.5086	2.2855-2.7318
Rate of other causes of death		
From normal (u_0)	0.0094	0.0087 - 0.0101
From PCDP (u_1)	0.0159	0.0127 - 0.0191
From CP (u_2)	0.0213	0.0164 - 0.0261

^{a)} CI, confidence interval.

^{b)} The proportion of over-detection, 40.45%, was estimated using a mover-stayer model.

Results. Finish PSA screening for prostate cancer

The estimated proportion of over-detection was 40.45% by using a mover-stayer model

Wu et al, 2012 Biom J.

Impact of downstaging of breast tumor due to mammography screening on sensitivity and over-detection

• Small tumor has a lower sensitivity than large tumor

 The proportion of overdiagnosis would be increased when the proportion of small breast tumour among screen-detected cases increase

Overdiagnosis with mammography in Taiwan

based on the Taiwanese randomized controlled trial for young women

Overdiagnosis with mammography in Taiwan based on the Taiwanese Population-based service screening

Original Investigation

Population-Based Breast Cancer Screening With Risk-Based and Universal Mammography Screening Compared With Clinical Breast Examination 2016 JAMA Oncology A Propensity Score Analysis of 1 429 890 Taiwanese Women

Amy Ming-Fang Yen, PhD; Huei-Shian Tsau, PhD; Jean Ching-Yuan Fann, PhD; Sam Li-Sheng Chen, PhD; Sherry Yueh-Hsia Chiu, PhD; Yi-Chia Lee, PhD; Shin-Liang Pan, PhD; Han-Mo Chiu, PhD; Wen-Horng Kuo, PhD; King-Jen Chang, PhD; Yi-Ying Wu, PhD; Shu-Lin Chuang, PhD; Chen-Yang Hsu, PhD; Dun-Cheng Chang, PhD; Shing-Lang Koong, PhD; Chien-Yuan Wu, MS; Shu-Lih Chia, MS; Mei-Ju Chen, MS; Hsiu-Hsi Chen, PhD; Shu-Ti Chiou, PhD

Total Incidence of breast cancer

Risk-based vs CBE: RR=0.97 (95% CI: 0.92-1.03) Mammography vs CBE: RR=1.13 (95% CI: 1.08-1.18)

Conclusion

- The estimated proportion of over-diagnosis cases is affected by lead-time, sensitivity, and changing incidence, which causes the large disparity of over-detection.
- We clarified the estimation of over-diagnosis by the application of stochastic approaches taking three factors into account.
- Attention to over-diagnosis should be paid given a full-grown mature screening program.

THANKS FOR YOUR ATTENTION!