

Stochastic Process for Disease Screening and Surveillance

Professor Hsiu-Hsi Chen

National Taiwan University

2018-06-25

College of Public Health National Taiwan University

Outline

- Stochastic Process and Health Economic Decision Making Model
- Personalized Prevention Model with Stochastc Process -An Example of Breast Cancer
- Several New Applications with Stochastic Process
- Emerging Issues of Disease Screening and Surveillance

Evolution of Breast Cancer Prevention

JAMA Oncology

Original Investigation

Population-Based Breast Cancer Screening With Risk-Based and Universal Mammography Screening Compared With Clinical Breast Examination A Propensity Score Analysis of 1429 890 Taiwanese Women

Figure. The 3 Taiwanese Breast Cancer Mass Screening Programs in Chronological Order from 1999 Through 2009

✓ Mortality reduction:

41% (RR=0.59, 0.48-0.73)

✓ Advanced breast cancer reduction:

30%(RR=0.70, 0.66-0.74)

Big Data Analysis for Health Decision-Making

Stochastic model for hepatitis B virus infection through maternal (vertical) and environmental (horizontal) transmission with applications to basic reproductive number estimation and economic appraisal of preventive strategies

- HBV disease progression is essential for
 - elucidating the spread of HBV among population (dynamic of HBV infection)
 - assessing the efficacy of interventions
 - economical appraisal of population-based preventive strategies.
- HBV transmission:
 - Vertical: maternal route
 - Horizontal: environmental route
- HCC progression natural history

Hui-Fang Hung · Ya-Chuan Wang · Amy Ming-Fang Yen · Hsiu-Hsi Chen Stoch Environ Res Risk Assess (2014) 28:611–625 DOI 10.1007/s00477-013-0776-0

Fig. 1. Decision strategies used in the cost-effectiveness analysis of supplemental prophylactic lamivudine use. **HBeAg** = hepatitis B e antigen; **HBIG** = hepatitis B immunoglobulin; **HBsAg** = hepatitis B surface antigen; **HBV** = hepatitis B virus; + indicates positive; - indicates negative.

Big Data Analysis with Markov Decision Model

Personalized Prevention Model-An Example of Breast Cancer

Personalized Prevention, Surveillance, Treatment and Therapy for Breast Cancer

BJC (British Journal of Cancer (5112, 154, 1541-3546)

Multi-state, Multi-factorial Breast Cancer Progression

Individually tailored screening of breast cancer with genes, tumour phenotypes, clinical attributes, and conventional risk factors. BJC 2013; 108.

Multi-disciplinary Breast Cancer Risk

The recommend age to begin screening and interscreening interval for screening by percentiles of risk score

Low Risk

Economic Evaluation

Acceptability curve of primary and secondary breast cancer prevention for **non-BRCA Carrier**

statistical Methods in Medical Research 0(0) 1–21 C The Author(s) 2016 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/0962280216682284 journals.sagepub.com/home/smm SAGE

Bayesian negative-binomial-family-based multistate Markov model for the evaluation of periodic population-based cancer screening considering incomplete information and measurement errors

Chen-Yang Hsu,¹ Ming-Fang Yen,² Anssi Auvinen,³ Yueh-Hsia Chiu⁴ and Hsiu-Hsi Chen¹

- How many rounds of screens are required before identifying a asymptomatic breast cancer – 2.77 rounds
- Can a subject be categorized as very low risk for stopping screening after several rounds of screening with negative results – 8 rounds

Queue Hurdle Coxian Phase-type Model incorporating with Disease Natural History

Coverage rate (%)	Compliance rate (%)	Advanced CRC Reduction (%)						
3% of Positive rate								
30	60	6						
	90	8						
50	60	8						
	90	14						
90	60	15						
	90	23						
7% of Positive rate								
30	60	12						
	90	18						
50	60	20						
	90	29						
90	60	33						
	90	46 🔶						

Disease Natural History

Random Walk Model for Drift (p-q) of f-Hb Concentration (Fecal Immunological Test) and Gambler's Ruin Probability

State group	р (95% CI)	q (95% CI)	f-Hb (µg/g)	Ruin probability	Expected Days
Cancer	0.823 (0.806,0.842)	0.177 (0.159,0.194)	400	0.785 (0.736,0.739)	486 (475,496)
Advanced adenoma	0.776 (0.745,0.804)	0.224 (0.196,0.255)	200	0.711 (0.660,0.759)	257 (248,267)
Nonadvanced adenoma	0.708 (0.691,0.728)	0.292 (0.272,0.309)	150	0.588 (0.5530.626)	211 (205,216)
Normal	0.262 (0.261,0.264)	0.738 (0.736,0.739)	20	<0.001	2.10 (2.09,2.11)

Emerging Issues in Disease Screening and Surveillance

- Overdiagnosis in disease screening
- Efficient approach for information extraction
- Emerging infectious disease outbreak

How Overdiagnosis Affect Survival of Breast Cancer ?

Sampling Design for Multi-state Outcome with Costly Biomarkers

Stochastic model for non-standard case-cohort design

Tony Hsiu-Hsi Chen,^{*,†} Ming-Fang Yen, Ming-Neng Shiu, Tao-Hsin Tung and Hui-Min Wu

Fig. 1. The reported cases of hand, foot, and mouth disease (HFMD) or herpangina (HA) in a physician-based sentinel surveillance system and the severe cases of HFMD or HA in Taiwan from 1999 to 2008.

Integrated Framework of Stochastic models for Health Care Decision Making

Thank you for your attention