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Background and Motivation

Each sleep cycle broadly consists of sleep stages: Awake, Rapid Eye
Movement (REM), and Non-REM.
The non-REM stage can be further classified into N1, N2 (shallow
sleep) and N3 (deep sleep).

Figure: An 8-hour sleep of a healthy subject



Background

Figure: Difference between normal sleep and insomnia

It is hard for patients to be aware of the shortage of stages REM and
N3, which may be linked to depression, memory loss, and apnea.

Mahowald, M. W. and Schenck, C. H. (2005). Insights from studying human sleep

disorders. Nature, 437, 1279-1285.



Visual EEG scoring

Clinically, the sleep stage within a 30s epoch is mainly determined by
the pattern of EEG, EOG and EMG signals based on a standard
named AASM.
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Figure: 30s raw EEG data for each stage



Figure: Drawback of the visual scoring method (There exists some
disagreement on the sleep patterns scored by different specialists.)

Goal: designing an automatic sleep scoring algorithm
Our algorithm consists of the following three steps:

Feature extraction by the synchroqueezed short time Fourier
transform

Feature clustering by diffusion maps

Classification by hidden Markov model



Question: How to recover the sleep-stage pattern for the 20th subject?



Figure: Baseline Database



Feature extraction by STFT
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Figure: 30s raw EEG data for each stage



x ∈ RN : an EEG signal with sampling rate S Hz.
If the database consists of 20 subjects and the length of sleep for
each subject is 6 hours, then N = 20× S× 3600× 6.
Since we would like to quantize the EEG patterns per 30
seconds, x is split into J := N/W (W = 30S) almost disjoint
frames

x(1), x(2), ..., x(J).

Each frame x(j) has 30S + 1 data points, which are expressed as

x(j) = (x(j)
−15S, ..., x

(j)
0 , ..., x

(j)
15S).

The STFT of x is defined by

Xg(k, j) :=

15S∑
m=−15S

e−i2π k
K mx(j)

m
1
H

g(
m
H

), k ∈ {0, , 1, ...,K − 1},

where K ∈ N is a constant relevant to the frequency resolution

and the window function g(z) = 1√
2π

e−
z2
2 .



For the special case x(t) = exp(i2πω0t), the continuous version of
STFT

Xg(ω, t) :=

∫
R

e−i2πω(s−t)x(s)
1
H

g(
s− t

H
)ds

can be rewritten as

Xg(ω, t) =ei2πω0t exp
(
−2π2(ω − ω0)2H2) .
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Figure: Spectrogram of x(t) = ei2πω0t with ω0 = 8. The dashed line in (b) is
the instantaneous frequency curve of x. The instantaneous frequency curve
ω = 8 Hz is blurred by the Gaussian kernel.



For the special case,

ω0 =
1

2π
Im
(
∂

∂t
lnXg(ω, t)

)
.

Xg(ω, t)
∂ lnXg

∂t
(ω, t) =i2πω

∫
R

e−i2πω(s−t)x(s)
1
H

g(
s− t

H
)ds

−
∫
R

e−i2πω(s−t)x(s)
1

H2 g
′
(
s− t

H
)ds

=i2πωXg(ω, t)− H−1Xg′ (ω, t). (1)



Substituting

∂ lnXg

∂t
(ω, t) =i2πω − H−1

Xg′ (ω, t)

Xg(ω, t)

into

ω0 =
1

2π
Im
(
∂

∂t
lnXg(ω, t)

)
yields

ω0 = ω − Im

(
1

2πH

Xg′ (ω, t)

Xg(ω, t)

)
,

which means that the energy near ω should be shifted to

ω − Im
(

1
2πH

X
g′ (ω,t)

Xg(ω,t)

)
for each t > 0.



Synchrosqueezed transform (SST)

� For the continuous-time case, the new spectral energy distribution is

Enew(ω̂, t) =

∫
Λ(ω̂)
|Xg(ω, t)|2dω, ω̂ ∈ [0, 1],

where

Λ(ω̂) =

{
ω ∈ [0, 1] | ω − Im

(
1

2πH

Xg′ (ω, t)

Xg(ω, t)

)
= ω̂

}
.

� For the discrete-time case, the new energy distribution for the jth
frame x(j) is

Enew(k̂, j) =
∑

k∈Λ(k̂)

|Xg(k, j)|2

where

Λ(k̂) =

{
k ∈ {0, ...,K − 1} | k − Im

(
K

2πH

Xg′ (k, j)

Xg(k, j)

)
∈ [k̂ − 1

2
, k̂ +

1
2

)

}
.



Effects of energy reallocation
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(c) STFT-based SST
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Figure: Spectrogram of (a) the test signal obtained by (b) STFT and (c) SST.
The dashed lines in (b) are the correct instantaneous frequency curves.



Spectrogram of an EEG signal

Due to the presence of noise and the complication of physiological
signals, the patterns in the spectrogram are not easy to be observed
only by visual observation.
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According to [2], the depth of sleep can be partially inferred from the
main IF of the electrical activity of brain.

wave name frequency band possible occurrence time
Delta 0.5-3 Hz Deep sleep (N3)
Theta 4-7 Hz REM or Dreaming period
Alpha 7.5-12.5 Hz Relaxation with closed eyes (N1 or N2)
Beta 14-31 Hz Wakefulness

The EEG pattern for the jth epoch is quantified by {y1(j) y2(j) · · · }:
y1(j) =

∑
0.5<Sk/K<3

Enew(k, j)

y2(j) =
∑

4<Sk/K<7
Enew(k, j)

y3(j) =
∑

7.5<Sk/K<12.5
Enew(k, j)

y4(j) =
∑

14<Sk/K<31
Enew(k, j)

[2] Buzsaki, Gyorgy (2006). Rhythms of the Brain. New York: Oxford University

Press.



Feature Clustering

Given an EEG signal, let

y(j) := [y1(j) y2(j) · · · ym(j)]T, j ∈ {1, 2, ...,N},

be the feature corresponding to the jth time slot. We suppose that the
feature series y(1), y(2), ... is controlled by an underlying factors
θ(1),θ(2), ...

Weighted Euclidean distance

dist(θ(j), θ(k))
4
=

√
(y(j)− y(k))T(

C−1
j + C−1

k

2
)(y(j)− y(k)), (2)

where Cj (resp. Ck) is the sample covariance matrix of the features
within the K-nearest neighbors of y(j) (resp. y(k)). K is a
predetermined integer.



Diffusion Distance (proposed by Coiman & Lafan in 2005)

In order to evaluate the affinity between different features (or the
underlying factors {θ(j)}N

j=1 ⊂ Rd), we consider an edge-weighted
graph G. (notation exchange: θ(j)⇔ θ(tj))

K = [Ki,j] is called the similarity (or affinity) matrix.
Singer, A. and Coifman, R. R. Non-linear independent component analysis with

diffusion maps. Applied and Computational Harmonic Analysis



On the graph G, we construct a Markov chain with transition matrix P
by row normalizing the similarity matrix K:

P = D−1K, D = diag(

N∑
j=1

K1,j, ...,

N∑
j=1

KN,j).

Its jth row

P(j, :) =
[
Kj,1 Kj,2 Kj,3 · · ·

] [∑
`

Kj,`

]−1

is the probability distribution of one-step random walk starting from
vertex θ(j).



Two underlying factors θ(j) and θ(k) are expected to be very
similar if their neighborhoods greatly overlap.

The strength of overlapping can be evaluated by the difference
between P(j, :) and P(k, :).

Definition of Diffusion Distance
The diffusion distance between θ(j) and θ(k) is defined by comparing
the difference between two probability distributions:

Dh(θ(j), θ(k)) =
N∑
`=1

|Ph
j,` − Ph

k,`|2/D`,

where Ph
j,` (resp. Ph

k,`) is the probability that a particle, whose initial
position is at vertex θ(j) (resp. θ(k)), appears at vertex θ(`) after
P-transitioning h steps.



Diffusion map

Consider the diagonalization of the transition matrix P

P =
[

u1 u2 · · · uN
]

Diag(λ1, λ2, ..., λN)
[

u1 u2 · · · uN
]−1

and define a mapping Φh : Rd → RN−1

θ(j)
Φh−→


λh

2u2(j)
λh

3u3(j)
λh

4u4(j)
...

λh
NuN(j)

 . (3)

Dh(θ(j), θ(k)) = ‖Φh(θ(j))− Φh(θ(k))‖RN−1

In the following discussion, the subscript h of Φ is ignored.



Open access database PhysioNet

This database contains 20 subjects, including 10 males and 10
females.
Their ages range from 25-34 years old.
Two channels of EEG signals for each subject are recorded. The
first one is named O1A2, while the second one is named O2A1.

Figure: reference: [3]

The sleep stage for each time slot has been assigned by the well
trained specialists (the traditional visual scoring method).

The data are downloaded from https : //www.physionet.org/pn4/sleep − edfx/

[3] Salome Kurth, et al. Development of Brain EEG Connectivity across Early

Childhood: Does Sleep Play a Role? Brain Science (2013)



Truncated diffusion map

θO1A2, θO2A1: the underlying processes controlling the
observable features of O1A2 and O2A1, respectively.

PO1A2, PO2A1: the transition matrices generated by the
observable features of O1A2 and O2A1, respectively.

ΦO1A2, ΦO2A1: the diffusion maps defined by the eigenvector
decomposition of PO1A2 and PO2A1, respectively.

For j = 1, 2, ...,N,

θO1A2(j)
ΦO1A2−→

 λh
2u2(j)
λh

3u3(j)
λh

4u4(j)

 , θO2A1(j)
ΦO2A1−→

 λh
2ũ2(j)
λh

3ũ3(j)
λh

4ũ4(j),


u2, u3, u4 (resp. ũ2, ũ3, ũ4) are the first three nontrivial eigenvectors of
PO1A2 (resp. PO2A1).



Feature clustering
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(b) ΦO2Aa1

After coloring the diffusion maps of θO1A2(j) and θO2A1(j) according
to the sleep stage at the jth time slot obtained by the traditional visual
scoring method, we observed that

At some level, ΦO1A2 and ΦO2A1 cluster underlying factors
{θO1A2(j)|j = 1, ...,N} and {θO2A1(j)|j = 1, ...,N} according to the
sleep stages.



Alternating diffusion map (ADM)

For merging information, we consider an alternative scheme:

Based on the diagonalization of PO1A2PO2A1

PO1A2PO2A1 =
[

u1 · · · uN
]

Diag(λ1, . . . , λN)
[

v1 · · · vN
]T
,

the alternating diffusion map Φalt : R2d → RN−1 is defined by

(
θO1A2(j), θO2A1(j)

) Φalt−→ vj :=


λh

2u2(j)
λh

3u3(j)
λh

4u4(j)
...

λh
NuN(j)

 .

Lederman, R. R., Talmon, R., Wu, H. T., Lo, Y. L., & Coifman, R. R. Alternating

diffusion for common manifold learning with application to sleep stage assessment.

In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing.



Visualization of the alternating diffusion map
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Figure: Alternating diffusion map of
(
θO1A2(j), θO2A1(j)

)
, j = 1, 2, ...,N.

The figure above shows that the points
vj = Φalt

((
θO1A2(j), θO2A1(j)

))
, j = 1, ...,N, can be divided into five

groups (labeled by Awake, REM, N1, N2, N3) roughly.



ADM of EEG features extracted from different subjects
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Problem formulation (Inter-individual sleep assessment)

Notation:
vj: the diffusion-mapped feature for the jth frame/epoch
sj: the label of vj

sj ∈ {Awake, REM, N1, N2, N3} .

Question: When the sleep-stage pattern for the 20th subject is
unknown, i.e., the labels of vn+1, vn+2,...,vN are unknown for some n,
how to recover it?



Approach 1: Support Vector Machine (SVM)
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(a) Partially colored ADM (Only
v1, ..., vn are colored according to
their sleep stages.)

(b) Idea of SVM

The idea of SVM is
Splitting the R3 space into several regions based on the colored
alternating diffusion maps vj, j ∈ {1, 2, ..., n}.
For each j ∈ {n, n + 1, ...,N}, the sleep stage sj is guessed
according to vj belonging to which region.



Approach 2: Hidden Markov Model (HMM)

The sleep-stage sequence sn+1, sn+2, ... is modeled by a Markov
chain.
The states can not be observed directly.
Empirical transition matrix (p).
∀ s, s

′ ∈ {Awake,REM,N1,N2,N3},

p(s
′ |s) =

 n∑
j=1

1{sj = s, sj+1 = s
′}

[ n∑
`=1

1{s` = s}

]−1

,

Each state sk, where k ∈ {n + 1, n + 2, ...}, has an emission vk.



Discretization of the observation space

To introduce a HMM, we need to create a cookbook

B = {cA
1 , ..., c

A
K , c

R
1 , ..., c

R
K , c

N1
1 , ..., cN1

K , cN2
1 , ..., cN2

K , cN3
1 , ..., cN3

K },
where cA

1 , ..., c
A
K are the centroids of the partition {Q1, ...,QK} of

ΛA = {vj|sj = Awake, j ≤ n} and {Q1, ...,QK} minimizes the value
K∑

i=1

∑
x∈Pi

|x− centroid(Pi)|2, where ΛA =

K⊔
i=1

Pi. (4)

� Vector quantization: vj
VQ−→ ej = arg min

c∈B
|vj − c|, j = 1, ...,N.



Based on {sj, ej}n
j=1, we consider a hidden Markov chain with

� Transition matrix (p). ∀ s, s
′ ∈ {Awake,REM,N1,N2,N3},

p(s
′ |s) =

 n∑
j=1

1{sj = s, sj+1 = s
′}

[ n∑
`=1

1{s` = s}

]−1

,

� Emission matrix (b). ∀s ∈ {Awake,REM,N1,N2,N3} and c ∈ B,

bs(c) =

 n∑
j=1

1{sj = s, ej = c}

[ n∑
`=1

1{s` = s}

]−1

.

Conditioning on Sn = sn and emissions Ej = ej for j ≥ n + 1,

Pr (Sn+1 = sn+1, ..., SN = sN |en+1, ..., eN , Sn = sn)

=p(sn+1|sn)

 N−1∏
j=n+1

bsj(ej)p(sj+1|sj)

bsN (eN)Pr(En+1 = en+1, ... |Sn = sn)−1.



Results for the inter-individual sleep assessment

� Using the labeled diffusion-mapped features {(vj, sj)}n
j=1 to train the

hidden Markov model (HMM).
� Revealing unknown sleep stages {sj}N

j=n+1 based on the accessible
information (vn+1, ..., vN).
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Figure: Mean confusion matrix(Explanation: 17% of the entire sleep period
belongs to Awake and the HMM classifier has a 85% chance to make correct
predictions if the underlying sleep stage is Awake.)



Does the ADM indeed improve the accuracy of
classification?



Classification accuracy (ACC) comparison

The classification is performed in the alternating diffusion-mapped
features and in the SST-extracted features, respectively.

Database
Classification is performed in ...

Diffusion mapped features SST-extracted features

Sleep-EDF SC∗ 82% 63%

Sleep-EDF ST∗ 76% 64%

CGMH 68% 62%



Thank you for your attention!


