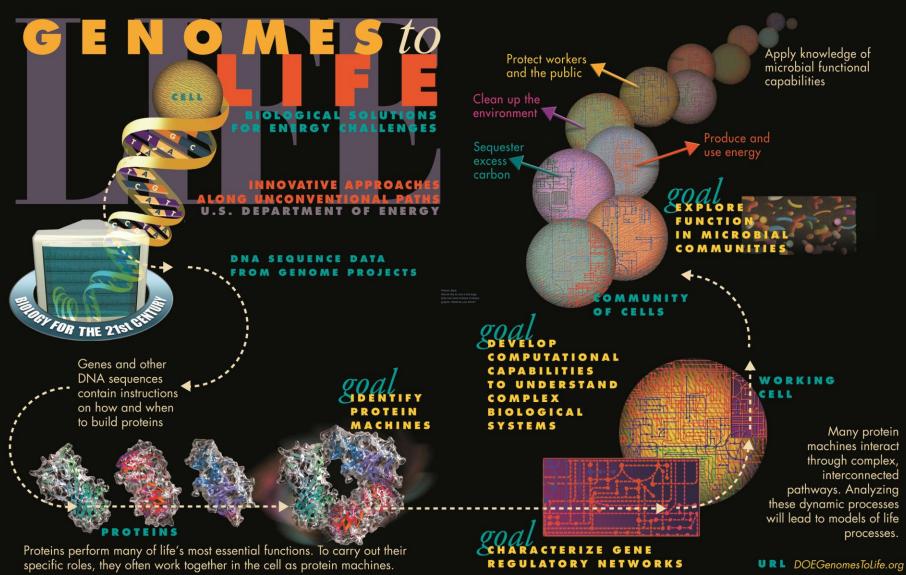
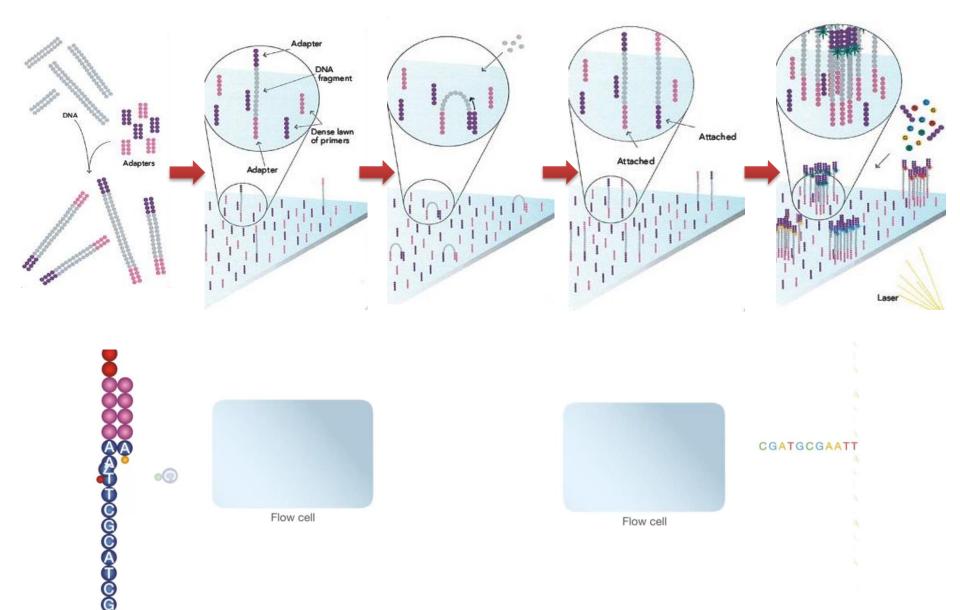


長短兼備:


高通量DNA定序技術於生物醫學研究之應用 Short and Long Read Sequencing Technologies and their Applications in Biomedical Research

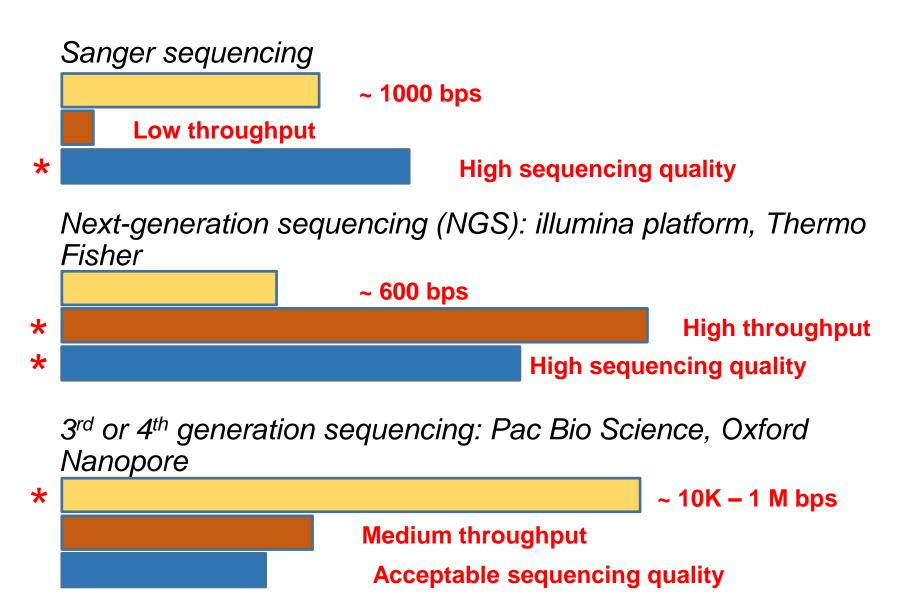
黃憲達 (Hsien-Da Huang)


國立交通大學 生物科技學系 講座教授 國立交通大學 生物科技學院 副院長

And the second s

10/02

Next-generation sequencing



Flow cell

Flow cell

GCGCAGCGCGGCCGCAGCAGCCTCCGCCCCCGCACGGTGT GTCCCGAGCTAGCCCGGCGGCCGCCGCCGCCCAGACCGGA AGTCCCCGCCTCGCCGCCAACGCCACAACCACCGCGCACGG AGAGCCGGAGCGAGCTCTTCGGGGAGCAGCGATGCGACCCT CTGCTGGCTGCGCTCTGCCCGGCGAGTCGGGCTCTGGAGGA ACGGCTCGTGCGTCCGAGCCTGTGGGGGCCGACAGCTATGAG GAAGTGCGAAGGGCCTTGCCGCAAAGTGTGTAACGGAATAG ATAAATGCTACGAATATTAAACACTTCAAAAACTGCACCTC TGGCATTTAGGGGTGACTCCTTCACACATACTCCTCCTG CGTAAAGGAAATCACAGGGTTTTTGCTGATTCAGGCTTGGC GAGAACCTAGAAATCATACGCGGCAGGACCAAGCAACATGG ACATAACATCCTTGGGATTACGCTCCCTCAAGGAGATAAGT AAATTTGTGCTATGCAAATACAATAAACTGGAAAAAAACTGT

Sequencing Length, Throughput & Quality

豪傑使長槍、君王用短劍

「十八般武器」是傳統兵器總稱。各有形 製、功能不同,如「刀」下就有九環刀、 雁翎刀、青龍偃月刀等。

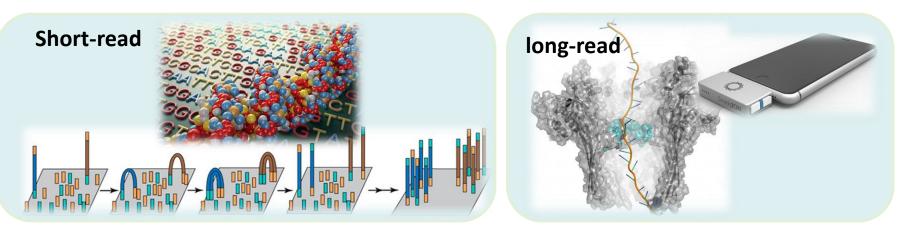
武器使用的訣竅,依**不同功能而設計不同**, 如「槍」用於遠刺;「劍」以刺、割為主。

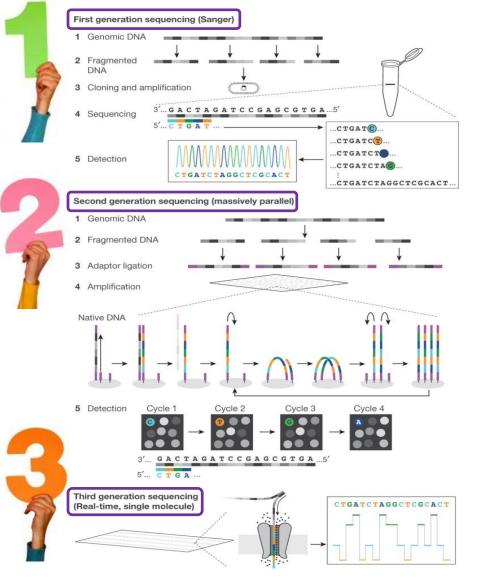
楊鐵心-耍長槍

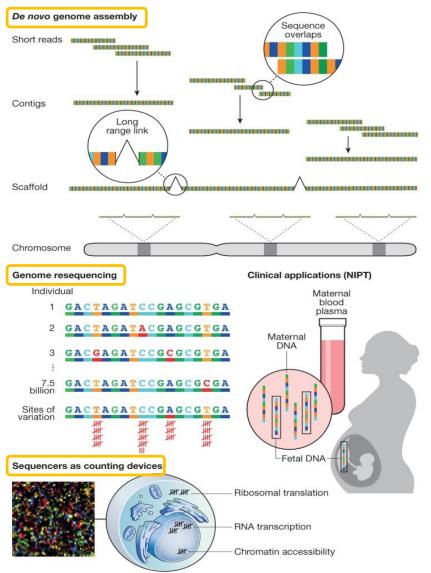
七十二路「楊家槍法」,出槍長, 且虛實,有奇正,進其銳,退其速, 其勢險,其節短,穩如山,動如雷。

「十八般武器」分成「**九長、九短**」, 「**九長**」是:刀、槍、棍、鉞、叉、鐺、 鉤、槊、戟。「**九短**」是:刀、劍、鞭、 槁、枴、斧、棒、鎚、杵。

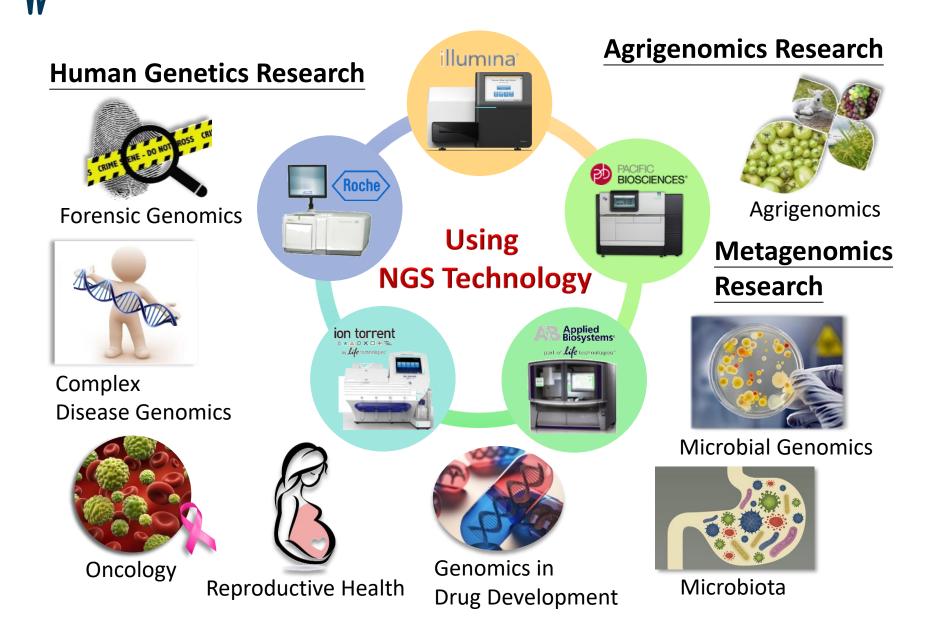
曹操-青釭劍

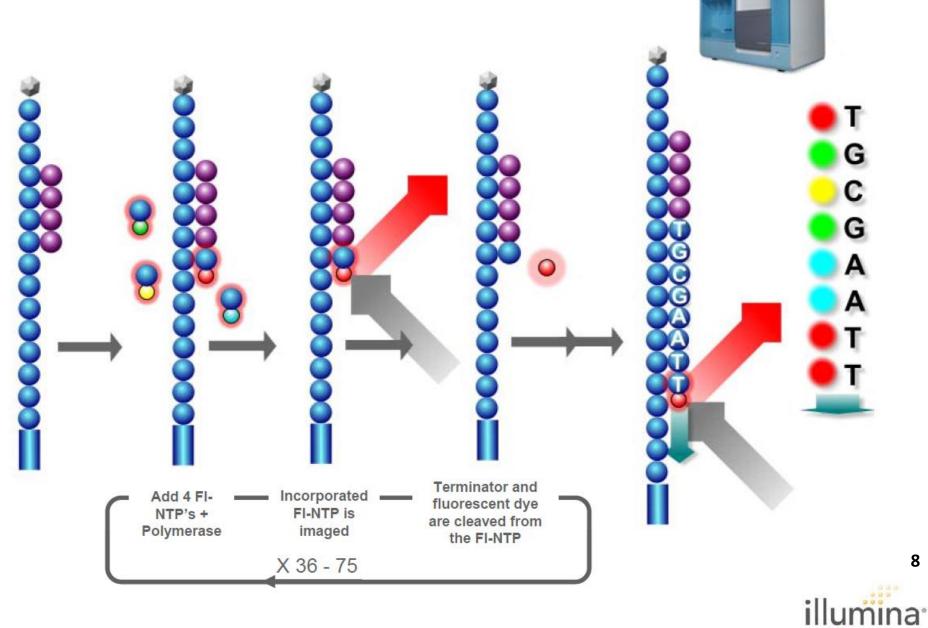

孫權-青冥劍


Short-read vs. long-read sequencing Which one is better?



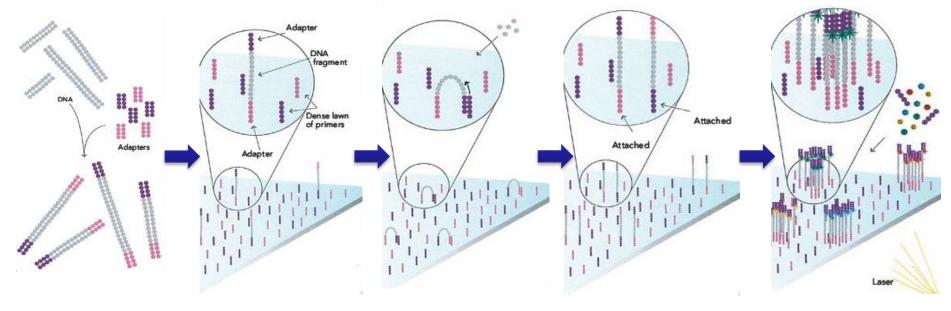
- The most frequently asked questions in sequencing.
- The sequencing read length depends on the instrument and chemistry used.
- The range of the read length of a short-read sequencing instrument is between 100 and 600 bps, while that of a long-read sequencing instrument varies between 10 to 15 kbps.
- The choice you make depends on the **goal of your experiment**; one isn't considered universally superior to the other.


DNA sequencing technologies and applications



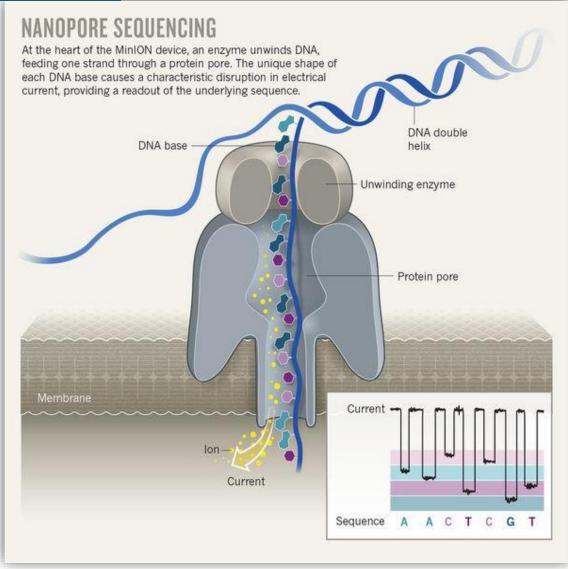
Nature 1–9 (2017) doi:10.1038/nature24286

Applications of Next-generation Sequencing


Sequencing

8

http://mi.caspur.it/workshop_NGS09/docs/Cappelletti_NGS09.pdf


Next-generation sequencing (NGS)

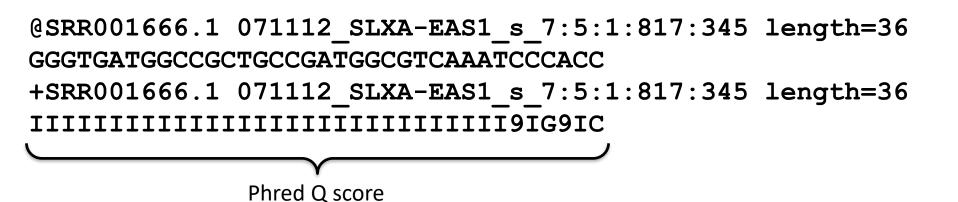
From www.illumina.com

TechBlog: The nanopore toolbox. 16 Oct 2017, Posted by Jeffrey Perkel

Oxford Nanopore Technology (ONT)

■超長讀長,取長補短
■隨測隨停,通量靈活
■鹼基修飾,實時讀取
■RNA分子,直接測序

https://nanoporetech.com/resource-centre/videos/minion-introduction


Assessing the quality of a Sequencing Read

Phred quality scores

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90 %
20	1 in 100	99 %
30	1 in 1000	99.9 %
40	1 in 10000	99.99 %
50	1 in 100000	99.999 %
$Q = -10 \log_{10}(P)$	Q: Phred quality score P: Base Call error rate	

Genome Res. March 1, 1998 8: 186-194; doi:10.1101/gr.8.3.186

Read of fastq format

http://en.wikipedia.org/wiki/FASTQ_format

Sequencing Platform Comparison

Platform	Illumina	Thermo Fisher	Pacific Biosciences	Oxford Nanopore
Comparison				•
Sequencing by Synthesis	Yes	Yes	Yes	No
DNA Size Selection	Yes	Yes	Yes	No
Post-library Amplification	Yes	Yes	No, Single Molecule	No, Single Molecule
Detection	Fluorescent Imaging	Ion Semiconductor	Fluorescent Imaging	Ionic Current Change
Sequencing Rate (s/base)	2 – 20 sec	30 sec	0.25 sec	0.002 sec
Running Time	Fixed	Fixed	Fixed	Run & Stop
DNA Sequencing	Yes	Yes	Yes	Yes
Direct DNA Modification Detection	No	No	Yes	Yes
Direct RNA Sequencing	No	No	No	Yes
Read Length	Short, up to 300 bp X 2	Short, up to 600 bp	Long, Average 6-8 Kb	Long, Average 6-30 Kb
Total Reads (M)	4 – 800 (PE)	2 – 130	0.3 – 0.5	0.3 – 0.5
Total Base (Gb)	1.2 - 120	0.3 – 25 /Chip	5 – 8 /SMRT Cell	2 – 10 /Flow Cell
Instrument Cost (USD)	20K – 275K	200 – 300K	350K	1K – 125K

What Short Read NGS Cannot Do?

LOW DIAGNOSTIC YIELD OF CURRENT STATE-OF-THE-ART NGS BASED TEST

Diagnostic yield: The likelihood that a test or procedure will provide the information needed to establish a diagnosis

Hum Genomics. 2015; 9(1): 10.

complex structural variations

STRUCTURAL VARIATION MORE IMPORTANT THAN SNP

XPERT (DPINION ON	DRUG	METABOLI	SM & T	OXICOL	OGY,	2016	
OL 12,	NO. 2, 135-	-147						
http://dx	.doi.org/10.	1517/17	425255.20	16.1133	3586			

REVIEW

Structural variants can be more informative for disease diagnostics, prognostics and translation than current SNP mapping and exon sequencing

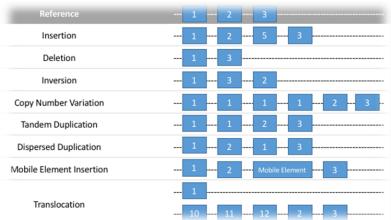
Allen D. Roses^{ab}, P. Anthony Akkari^c, Ornit Chiba-Falek^d, Michael W. Lutz^d, William Kirby Gottschalk^d, Ann Marie Saunders^d, Bob Saul^e, Scott Sundseth^f and Daniel Burns^g

*Department of Neurology and Neurosciences, Duke University, Durham, NC, USA; *Zinfandel Pharmaceuticals, Chapel Hill, NC, USA; *Shiraz Pharmaceuticals, Inc. Chapel Hill, NC, USA: "Department of Neurology, Duke University, Durham, NC, USA: "Polymorphic DNA, Alameda, CA, USA; ¹Caberner Pharmaceuticals, Inc, Chapel Hill, NC, USA; ⁹Zinfandel Pharmaceuticals, Inc, Raleigh-Durham, NC, USA

ARSTRACT

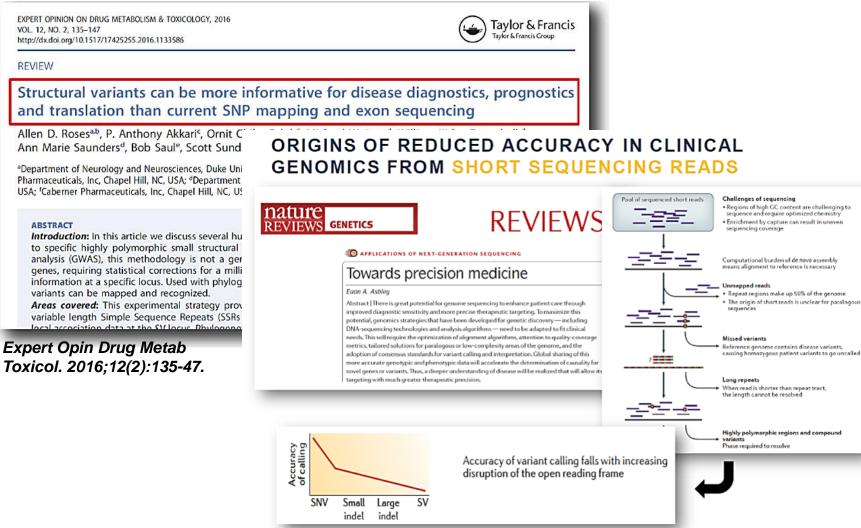
Introduction: In this article we discuss several human neurological diseases and their relationship to specific highly polymorphic small structural variants (SVs). Unlike genome-wide association analysis (GWAS), this methodology is not a genome screen to define new possibly associated genes, requiring statistical corrections for a million association tests. SVs provide local mapping information at a specific locus. Used with phylogenetic analysis, the specific association of length variants can be mapped and recognized.

ARTICLE HISTORY


Received 31 July 2015 Accepted 14 December 2015 Published online 2 February 2016

KEYWORDS

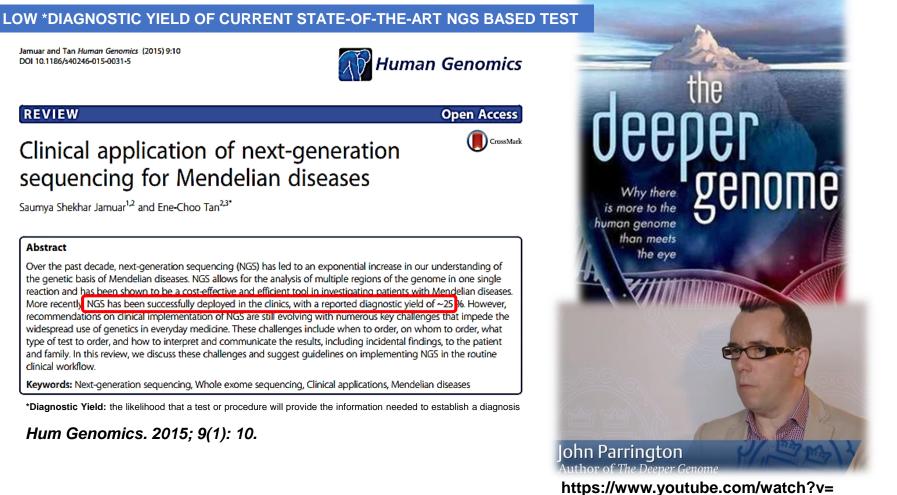
Areas covered: This experimental strategy provides identification of DNA variants, particularly variable length Simple Sequence Repeats (SSRs or STRs or microsatellites) that provide specific


Alzheimer's disease: amyotrophic lateral sclerosis; Lewy Bodies; mitochondrial motabolism: structur

Expert Opin Drug Metab Toxicol. 2016;12(2):135-47.

https://en.wikipedia.org/wiki/Human_Gen ome Structural Variation

Structural Variants are More Impactful than SNP

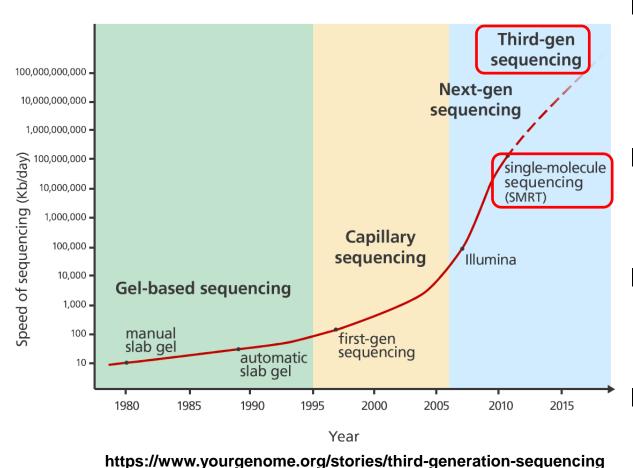


Nat Rev Genet. 2016 Aug 16;17(9):507-22.

We Need a Deeper Genome

REVIEW

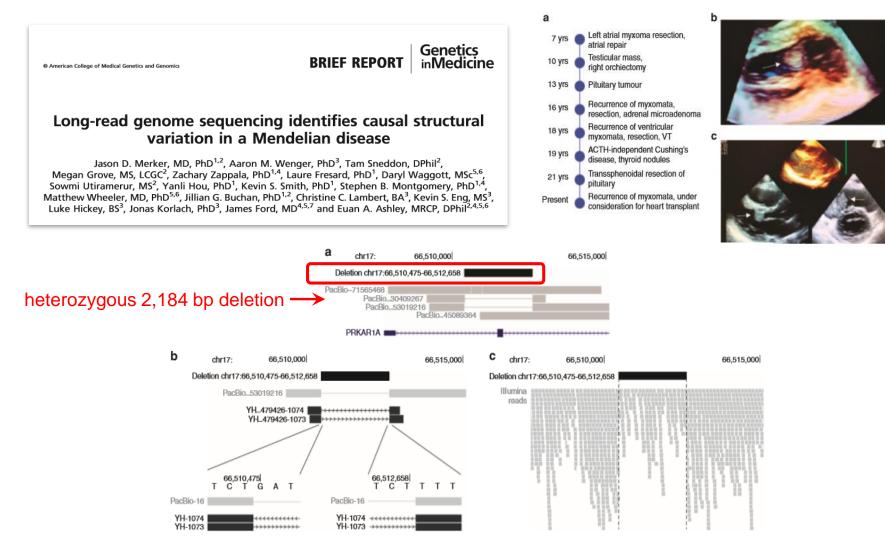
Abstract



WYvuAtQo- g

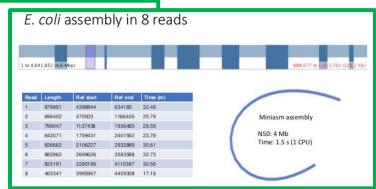
JOHN PARRINGTON

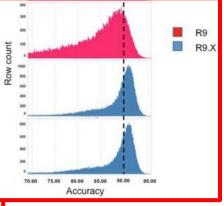
What's Beyond Short Read NGS?


HUMAN GENOMIC REGIONS UNRESOLVED BY SHORT SEQUENCING READS

Repeated regions (simple repeats, tandem repeats, transposonrelated repeats)

- Highly polymorphic regions (HLA) – haplotype phasing
- Structural variants (relocation, inversion, duplications)
- Un-sequencable regions by NGS (AT or GC rich regions)

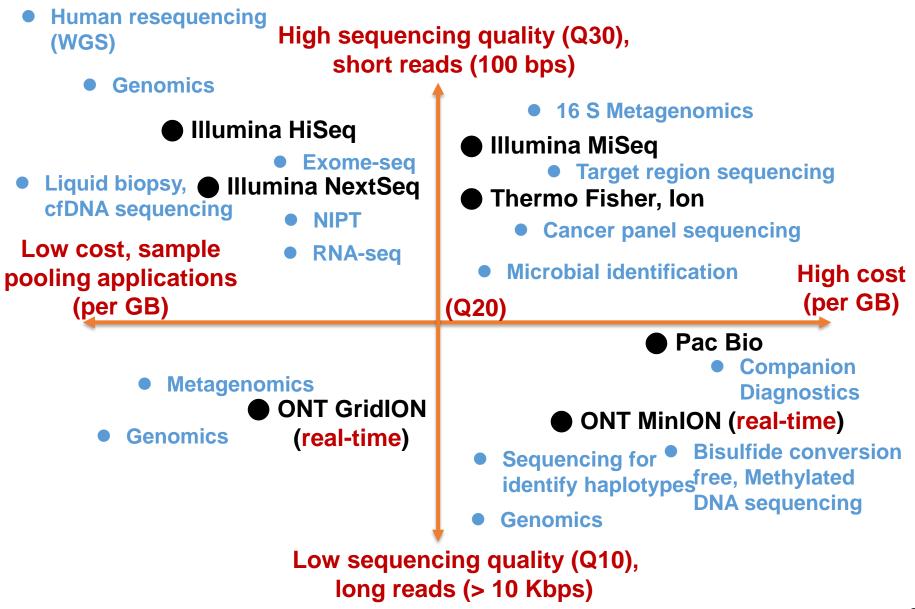

How "Long Reads" can Help?


Genet Med. 2018 Jan;20(1):159-163.

Features and Limitations of Nanopore Sequencing

- Very long read-length
- Low capital investment
- Single molecule, PCR-free
- Real-time & urgent applications
- Lower throughput
- Higher cost per GB than NGS
- Lower sequencing quality then NGS
- Hard calling genetic variants and mutations

Joshua Quick, University of Birminham, Feb 15, 2018

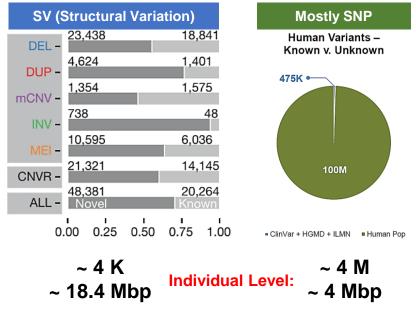

Clive G. Brown, 2016

- For medical applications –
- For academic research applications
- Key questions
 - How to choose platforms?
 - Will it be appropriate to integrated two platforms for an application?

Strategy for Selecting Seq. Platforms

Application-1

Exploring Human Genome Structural Variants (SV)


Human SV – Current Knowledge

ARTICLE

OPEN doi:10.1038/nature15394

An integrated map of structural variation in 2,504 human genomes

A list of authors and their affiliations appears at the end of the paper.

Nature. 2015 Oct 1;526(7571):75-81.

Catalog of Human SV:

- Illumina WGS (~100 bp reads, mean 7.4X coverage)
- 26 human populations

"...although SNPs contribute more eQTLs overall, our results suggest that SVs have a disproportionate impact on gene expression relative to their number."

"We further expand the number of candidate SVs in strong LD with GWAS hits by ~30% (39/136 novel associations implicating SVs as candidates) and find that GWAS haplotypes are enriched up to threefold for common SVs, which emphasizes the relevance of ascer-taining SVs in disease studies."

"...while many SVs in our callset are statistically phased, the diploid nature of the genome is non-optimally captured by current analysis approaches, which mostly rely on mapping to a haploid reference. We envision that in the future, the use of technology allowing substantial increases in read lengths over the current state-of-the-art will enable genomic analyses of truly diploid sequences to facilitate targeting these additional layers of genomic complexity."

Human Genome Assembly by ONT Reads

ARTICLES

nature biotechnology

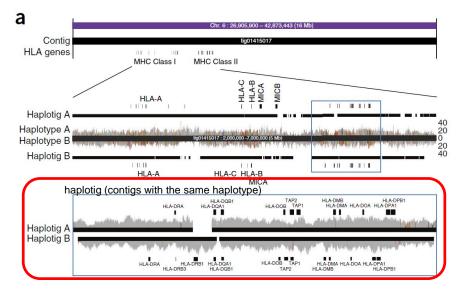
OPEN

Nanopore sequencing and assembly of a human genome with ultra-long reads

Miten Jain^{1,13}, Sergey Koren^{2,13}, Karen H Miga^{1,13}, Josh Quick^{3,13}, Arthur C Rand^{1,13}, Thomas A Sasani^{4,5,13}, John R Tyson^{6,13}, Andrew D Beggs⁷, Alexander T Dilthey², Ian T Fiddes¹, Sunir Malla⁸, Hannah Marriott⁸, Tom Nieto⁷, Justin O'Grady⁹, Hugh E Olsen¹, Brent S Pedersen^{4,5}, Arang Rhie², Hollian Richardson⁹, Aaron R Quinlan^{4,5,10}, Terrance P Snutch⁶, Louise Tee⁷, Benedict Paten¹, Adam M Phillippy², Jared T Simpson^{11,12}, Nicholas J Loman³ & Matthew Loose⁸

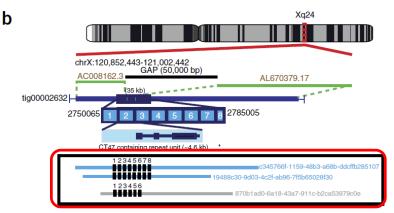
We report the sequencing and assembly of a reference genome for the human GM12878 Utah/Ceph cell line using the MinION (Oxford Nanopore Technologies) nanopore sequencer 91.2 Gb of sequence data, representing ~30x) theoretical coverage, were produced. Reference-based alignment enabled detection of large structural variants and epigenetic modifications. *De novo* assembly of nanopore reads alone yielded a contiguous assembly (NG50 ~3 Mb). We developed a protocol to generate ultra-long reads (N50 > 100 kb, read lengths up to 882 kb). Incorporating an additional 5x coverage of these ultra-long reads more than doubled the assembly contiguity (NG50 ~6.4 Mb). The final assembled genome was 2,867 million bases in size, covering 85.8% of the reference. Assembly accuracy, after incorporating complementary short-read sequencing data, exceeded 99.8% Ultra-long reads enabled assembly and phasing of the 4-Mb major histocompatibility complex (MHC) locus in its entirety, measurement of telomere repeat length, and closure of gaps in the reference human genome assembly GRCh38.

Nat Biotechnol. 2018 Apr;36(4):338-345.

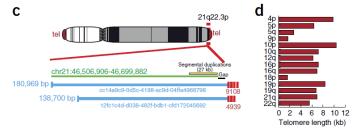

The Final Assembled Genome:

- 41 FC (Regular), 5 FC (Ultra-long)
- 91.2 Gb, ~30X
- Ultra-long Reads, N50 > 100 Kb, up to 882 Kb
- 2,867 million bases
- Covering 85.8% of reference genome
- Assembly accuracy: 99.8%
 (incorporating complementary short-read data)
- NG50 ~3 Mb
- With Ultra-long reads, NG50 ~6.4 Mb
- With Ultra-long reads, achieved phasing of the entire 4 Mb MHC locus

Ultra-long Reads, Assembly and Telomeres


nature biotechnology

- **OPEN** Heterozygous SNPs were called using Illumina data
 - Phased using the ultra-long nanopore reads
 - Generate two pseudo-haplotypes

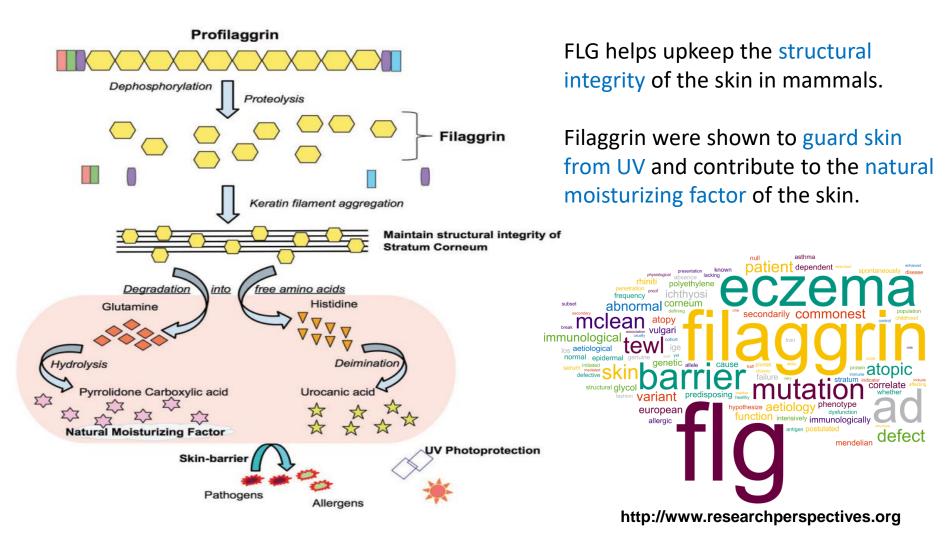


- A 16-Mbp ultra-long read contig and associated haplotigs are shown spanning the full MHC region.
- The first time the MHC has been assembled and phased over its full length in a diploid human genome.

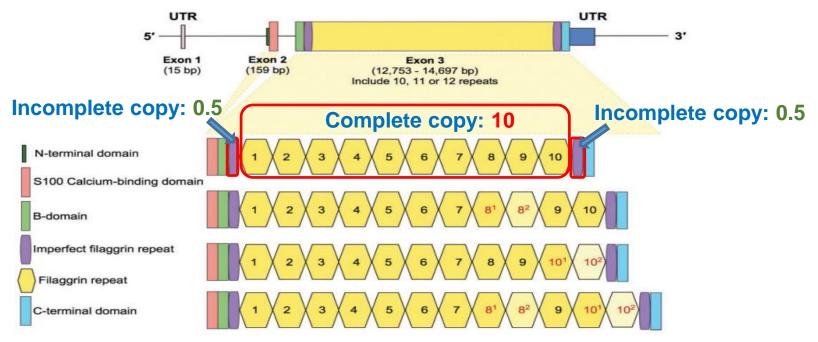
Nat Biotechnol. 2018 Apr;36(4):338-345.

Two reads provide evidence for an array of eight repeat copies and one read supports six copies, suggesting heterozygosity.

- FISH (fluorescent in situ hybridization) estimates and direct cloning of telomeric DNA suggests that telomere repeats (TTAGGG) extend for multiple kbs at the ends of each chromosome.
- Evidence for telomeric arrays that span 2–11 kb within 14 subtelomeric regions for GM12878.


One remarkable molecule: Filaggrin

- Ichthyosis vulgaris (尋常魚鱗病); Eczema (濕疹)
- The CNV allele frequencies in the Irish population were found to be 33.9%
 10 repeats, 51.5% 11 repeats and 14.6% 12 repeats. Shortest genotype (10,10): Eczema risk: 1.67
- When null mutations are excluded, each additional filaggrin repeat gained decreases the odds ratio for atopic eczema by 0.88.
- Filaggrin CNV makes a significant, dose-dependent contribution to eczema risk
 Ichthyosis vulgaris (魚鱗病)
 Eczema (濕疹)


J Invest Dermatol. 2012

Processing and function of Profilaggrin

Genome Biol. Evol. 2016, 8(10):3240–3255

Structure of FLG and Copy number

- Filaggrin repeats were shown to be copy number variable ranging from 10 to 12 copies among human populations.
- The copy number of these repeats was negatively associated with atopic dermatitis susceptibility.
- However, a comprehensive documentation of the global distribution of FLG genetic variation free of ascertainment bias has yet to be compiled.

Genome Biol. Evol. 2016, 8(10):3240-3255

Tandem Repeats Variations

COMMENTARY

See related article on pg 98

Profilaggrin, Dry Skin, and Atopic Dermatitis Risk: Size Matters

John A. I

Mutation risk facto gies. Nev in *FLG* al: findings i utility in i

Pediatric Dermatology Vol. 34 No. 3 e140-e141, 2017

Intragenic Copy Number Variation in the Filaggrin Gene in Ethiopian Patients with Atopic Dermatitis

Abstract: Gene involving truncati number variation a of developing atop Asian populations have been identifie ation between *FL* severity in a small proposed. We stu copy number and association betwee ber, suggesting th factors are of m Ethiopians to AD.

Research letter

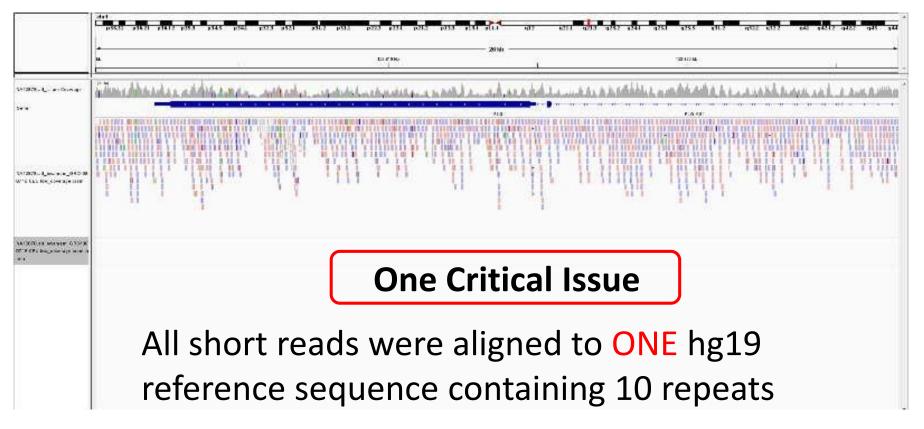
been suggested that the number of FLG repeats can relate to a dry skin phenotype; i.e., fewer repeats may lead to less FLG protein expression and drier skin (Ginger *et al.*, 2005). What is currently not known, however, is whether there is a relationship between the integers of correct

J Invest Dermatol. 2012 Jan;132(1):10-1.

long-range polymerase chain reaction (PCR) amplification of the *FLG* repeats, which has previously been described for various populations, including Africans (4). The total *FLG* CN was classified as low (20–21) or high (22–24).

A total of 105 cases were successfully genotyped and phenotyped and included in the study. The long-range PCR yielded products of sizes that confirmed a different

Pediatr Dermatol. 2017 May;34(3):e140-e141.


Copy-number variation of the filaggrin gene in Korean patients with atopic dermatitis: what really matters, 'number' or 'variation'?

DOI: 10.1111/bjd.14287

DEAR EDNTOR, Since the articles reporting a methodological breakthrough on the full sequencing of the gene encoding profilaggrin (FLG), 1,2 associations between loss-of-function mutations of FLG and atopic dermatitis (AD) have been reported across ethnicities.^{3,4} However, both the low prevalence of FLG mutations in patients with AD in some nations (< 4% in Italy) and the high prevalence of FLG mutations in healthy control in other nations (~ 10% in Ireland) suggest that factors other than FLG mutation may be at work.^{5,6} Brown *et al.* introduced an interesting new factor contributing to the risk of AD: copynumber variation aa(CNV).⁶ FLG is polymorphic, with allelic variants of 10–12 nearly identical repeats in exon 3.⁶ They

Br J Dermatol. 2016 May;174(5):1098-100.

Conventional Short Reads Alignment

Cannot make high confidence variant calls in the repeat region using short reads

Long Range PCR for full length of Filaggrin

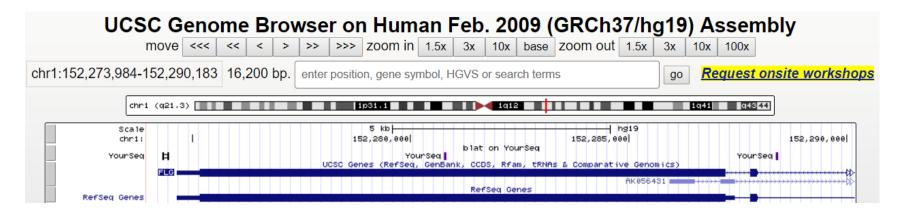
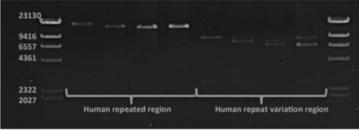
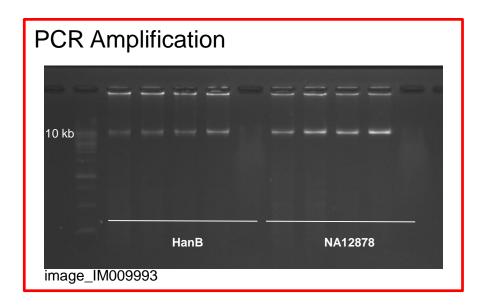
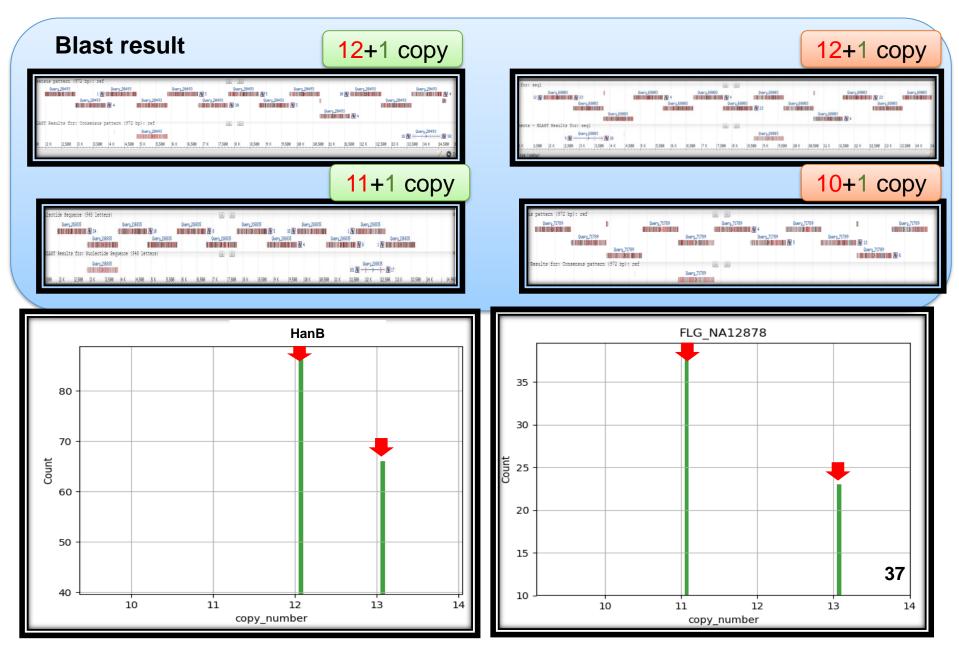




Table S1. Primer sets for the filaggrin gene repeat region in human, chimpanzee, gorilla,

orangutan, crab-eating macaque, and human variation in repeated region.

Human	hFLG (13969 bp in to	tal
Forward	5' -CTTGTCATATGGCTAACTGGCTTTCAGAGA-3'	
Reverse	5′ -ATTGTGGGACAGTGATTATGTTGGAGAAAA-3′	
Human variation	n repeated region hFLGv (6480 bp in to	tal)
Forward	5' -GTGCAAGCAGAAAAACATATGACA -3'	
rorward		

Romero V et al BMC Evolutionary Biology 17:10, 2017

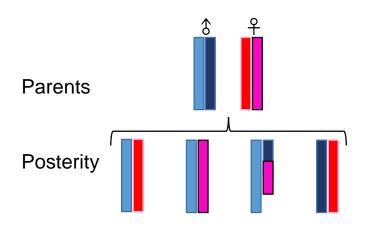

Preliminary Results

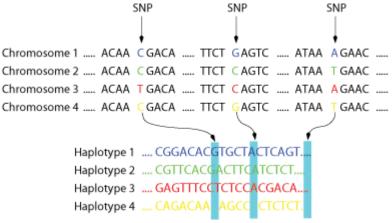
Sample	HanB1	HanB2	HanB3	NA12878
Reads (Q>=7)	3,182	6,246	49,346	277850
Align to FLG ref	4262	5068	34558	9169
>10,000 bp	686	724	3762	2443
Both F and R found	323	445	1780	1533
TRN Determined	(11 +1/ <mark>12</mark> +1)	(11+1/12+1) (with noise)	(11+1/12+1)	(10+1/12+1)

10 + 0.5 + 0.5 = 10 + 1

Incomplete copy: 0.5 Complete copy: 10 1 2 3 4 5 6 7 8 9 10

Identifying the copy number of FLG gene

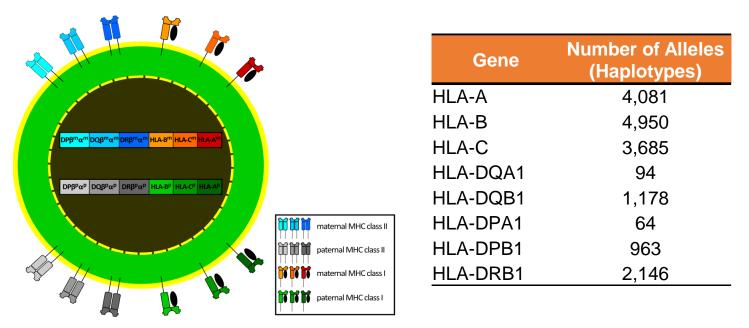



Application-2

Full genotyping for high polymorphic loci in Pharmacogenomics

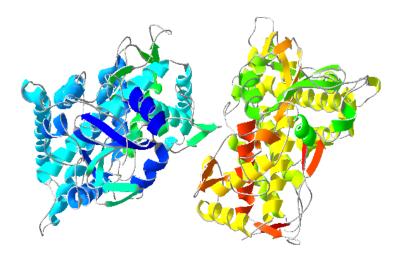
Haplotypes (Full genotyping of a high polymorphic locus)

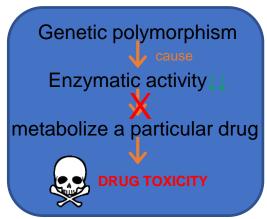
- A haplotype is a group of genes within an organism that was inherited together from a single parent
 - The term "haplotype" can also refer to the inheritance of a cluster of single nucleotide polymorphisms (SNPs)
 - There are highly polymorphic (more haplotypes) on genes of CYP or HLA



Filippo Geraci and Marco Pellegrini

Human Leukocyte Antigen (HLA)

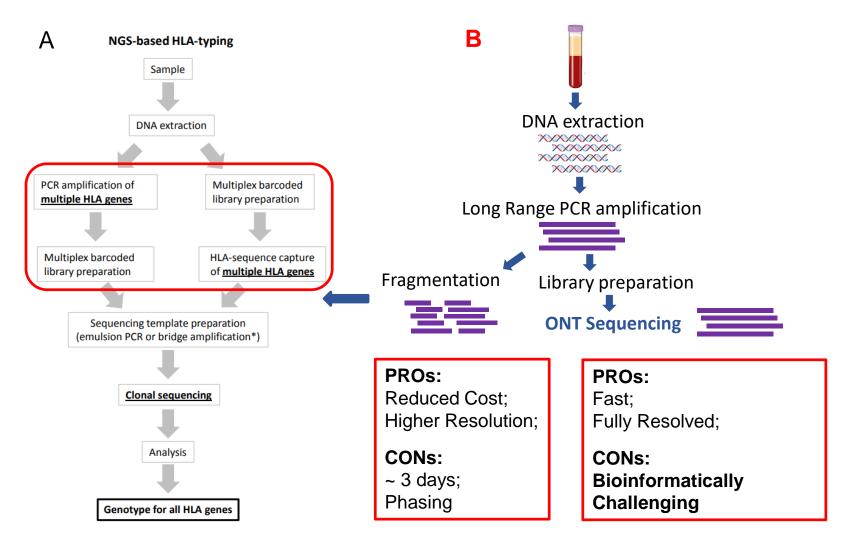

- The <u>human</u> leukocyte <u>antigen</u> (HLA) genes are the human versions of the <u>major</u> <u>h</u>istocompatibility <u>complex</u> (MHC)
- HLA system is the locus of genes that encode for proteins on the surface of cells that are responsible for regulation of the immune system in humans



Nucleic Acids Research. 2015 43:D423-431

Cytochrome P450 Enzymes

- Cytochrome P-450 mixed-function oxidase (CYP)
 - abundant in the liver and other organs
 - responsible for the metabolism of many drugs and environmental chemicals (antiarrhythmics, adrenoceptor antagonists, tricyclic antidepressants)
- Genetic polymorphisms of CYP2D6, CYP2C9, and CYP2C19 have been well studied

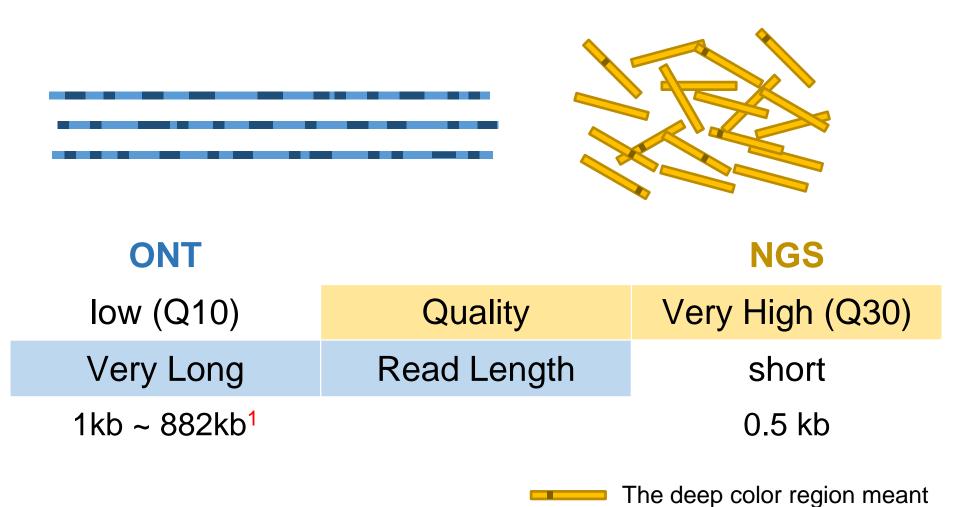


Examples of Haplotype-Drug Associations

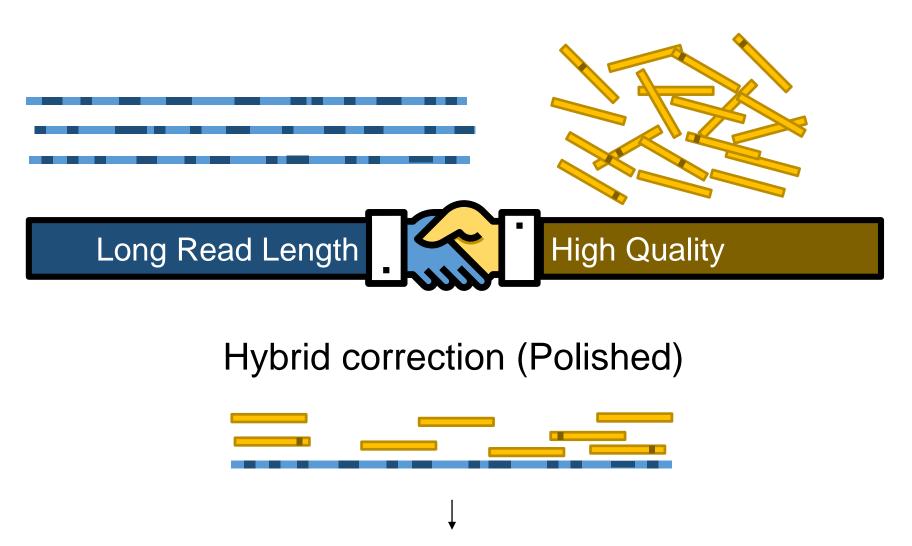
Gene	Haplotypes or genotypes	Phenotypes	Related Drug	Clinical Interpretation
АТМ	WT/WT	rs11212617 CC genotype	Metformin	NORMAL RESPONSE
CYP1A2	*1A/*1F	Ultrarapid Metabolizer	Cyclobenzaprine	INCREASE DOSE
CYP2A6	*1/*1	Normal Metabolizer	Nicotine	NORMAL RESPONSE
CYP2C19	*1/*2	Intermediate Metabolizer	Sertraline	USE CAUTION
CYP2C9	*1/*1	Normal Metabolizer	Warfarin	NORMAL DOSE
CYP2D6	*4/*35	Intermediate Metabolizer	Codeine	CONSIDER ALTERNATIVES
CYP3A4	*1A/*1B	Intermediate Metabolizer	Alfentanil	DECREASE DOSE
CYP3A5	*1A/*3A	Expresser	Sirolimus	NORMAL RESPONSE
CYP4F2	*1/*1	Normal Metabolizer	Phenprocoumon	NORMAL RESPONSE
DDRGK1	WT/c.510+364T>G	rs6051639 AC genotype	Ribavirin	USE CAUTION
DPYD	*5/*9A/c.496A>G/IVS10- 15T>C	Normal Metabolizer	Capecitabine	NORMAL RESPONSE
F2	WT/WT	Wild Type	Oral- Contraceptives	NORMAL RESPONSE
F5	WT/WT	Non Factor V Leiden Carrier	Eltrombopag	NORMAL RESPONSE
G6PD	WT/WT	Normal G6PD Efficiency	Chlorpropamide	NORMAL RESPONSE
HLA-B	15:02/08:20	15:02	carbamazepine	CONSIDER ALTERNATIVES

Platform for full genotyping of HLA loci

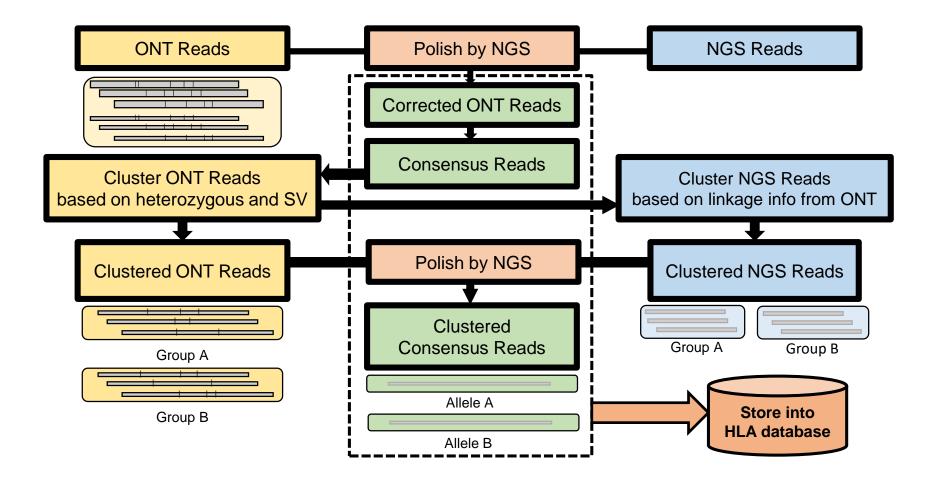
Hum Immunol. 2016 Nov;77(11):1016-1023.


High polymorphic genes associated with drugs efficacy and adverse events

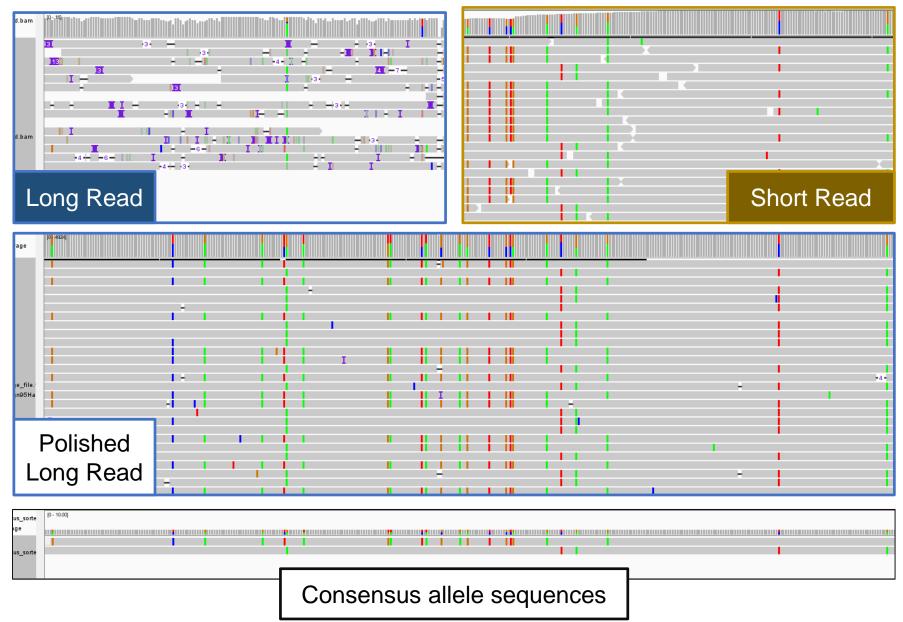
Pharmacogenomic Biomarkers in Drug Labeling								
ALK	CYP2B6	F2	HPRT1	NPM1	ROS1			
BCHE	CYP2C19	F5	IFNL3	PDGFRA	SERPINC1			
BCR-ABL1	CYP2C9	FIP1L1- PDGFRA	IL12A	PDGFRB	SLCO1B1			
BRAF	CYP2D6	FLT3	IL12B	PGR	TPMT			
BRCA	CYP3A5	G6PD	IL23A	PML-RARA	TPP1			
CASR	DMD	GALNS	IL2RA	POLG	UGT1A1			
CD274	DPYD	HLA-A	KIT	PROC	VKORC1			
CFTR	EGFR	HLA-B	MS4A1	PROS1				
CYB5R	ERBB2	HLA-DQA1	MYCN	RAS				
CYP1A2	ESR	HLA-DRB1	NAGS	RET				


https://www.fda.gov/Drugs/ScienceResearch/ucm572698.htm

Long read & Short read

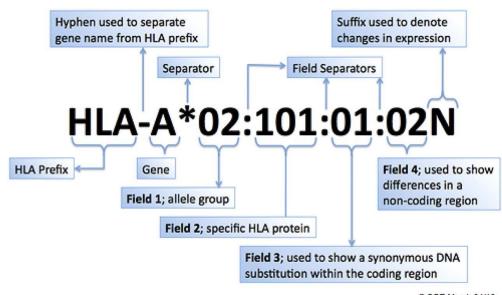

¹Nature Biotechnology 36, pages 338–345 (2018).

bad quality region.



High quality & long read length

Sequencing Analysis Work Flow



Construction of HLA-A alleles of HanB

Top alignment to IMGT: The allele type of HLA-A, HLA-B and HLA-C form HanB

HLA-A*02:10 HLA-A*24:02:01:01 HLA-B*15:32:01 HLA-B*40:06:01:01 HLA-C*04:01:01:14 HLA-C*08:01:01:01

© SGE Marsh 04/10

Constructing Database in Different Populations

SCIENTIFIC REPORTS

OPEN Mapping the genetic diversity of HLA haplotypes in the Japanese populations

"Several studies^{47–49} have reported the risk of inaccuracies and confounding in genetic association studies in populations even with relatively small genetic differences. In this line, based on our data, we can further advocate caution in using a generic Japanese panel (e.g., JPT in the HapMap) for imputation of SNPs and HLA alleles in samples from Okinawa Prefecture."

Sci Rep. 2015 Dec 9;5:17855.

data."

"we reconstruct full MHC

haplotypes from de novo

assembled trios.... We report 100 full MHC haplotypes and

use in imputation with GWAS

call a large set of structural variants in the regions for future

Received: 17 July 2015 Accepted: 06 November 2015 Published: 09 December 2015

Woei-Yuh Saw^{1,2}, Xuanyao Liu^{1,3}, Cl 27:1597–1607 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/17; www.genome.org

Tomohiro Katsuya⁶, Ryosuke Kimu Ken Yamamoto¹¹, Mitsuhiro Yokota

Genome Research 1597 www.genome.org

Assembly and analysis of 100 full MHC haplotypes Yik-Ying Teo^{1,2,3,4,5,13,*} & Norihiro Ka from the Danish population

> Jacob M. Jensen,¹ Palle Villesen,^{1,2} Rune M. Friborg,¹ The Danish Pan-Genome Consortium,⁵ Thomas Mailund,¹ Søren Besenbacher,^{1,3} and Mikkel H. Schierup^{1,4}

¹Bioinformatics Research Centre, Aarhus University, 8000 Aarhus C., Denmark; ²Department of Clinical Medicine, Aarhus University, 8200 Aarhus N., Denmark; ³Department of Molecular Medicine, Aarhus University Hospital, Skejby, 8200 Aarhus N., Denmark; ⁴Department of Bioscience, Aarhus University, 8000 Aarhus C., Denmark Genome Res. 2017 Sep;27(9):1597-1607.

Journal of Clinical & Cellular

Immunology

Gowda et al., J Clin Cell Immunol 2016, 7:2 http://dx.doi.org/10.4172/2155-9899.1000399

Open Access

"This is the first case study of HLA typing using second and third generation NGS technologies for an Indian population. The PacBio platform is a promising platform for large-scale HLA typing for establishing an HLA database for the untapped ethnic populations of India ' Comparative Analyses of Low, Medium and High-Resolution HLA Typing **Technologies for Human Populations**

Malali Gowda^{1,2*}, Sheetal Ambardar¹, Nutan Dighe³, Ashwini Manjunath¹, Chandana Shankaralingu¹, Pradeep Hirannaiah¹, John Harting⁴, Swati Ranade⁴, Latha Jagannathan^{3*} and Sudhir Krishna^{5*}

¹Next Generation Genomics Laboratory, Centre for Cellular and Molecular Platform, National Centre for Biological Sciences, TIFR Bangalore, India

J Clin Cell Immunol 2016, 7:2

Significant Implications of HLA Haplotyping

MHC matching improves engraftment of iPSC-derived neurons in non-human primates

Asuka Morizane¹, Tetsuhiro Kikuchi ¹, Takuya Hayashi², Hiroshi Mizuma ², Sayuki Takara², Hisashi Doi², Aya Mawatari², Matthew F. Glasser³, Takashi Shiina⁴, Hirohito Ishigaki⁵, Yasushi Itoh⁵, Keisuke Okita 6, Emi Yamasaki¹, Daisuke Doi¹, Hirotaka Onoe^{2,7}, Kazumasa Ogasawara⁵, Shinya Yamanaka^{6,8} &

Jun Takahashi (1) 1,9

Nat Commun. 2017 Aug 30;8(1):385.

Common Allele/Haplotyping

BIOINFORMATION Discovery at the interface of physical and biological sciences

Bioinformation. 2017; 13(3): 94-100. Published online 2017 Mar 31. doi: 10.6026/97320630013094 PMCID: PMC5450251

Allelic Expression

Unique Allelic eQTL Clusters in Human **MHC Haplotypes**

Genes | Genomes | Gene

T-cell epitopes predicted from the Nucleocapsid protein of Sin Nombre virus restricted to 30 HLA alleles common to the North American population

Sathish Sankar,^{1,*} Mageshbabu Ramamurthy,¹ Balaji Nandagopal,¹ and Gopalan Sridharan¹

Bioinformation. 2017; 13(3): 94-100.

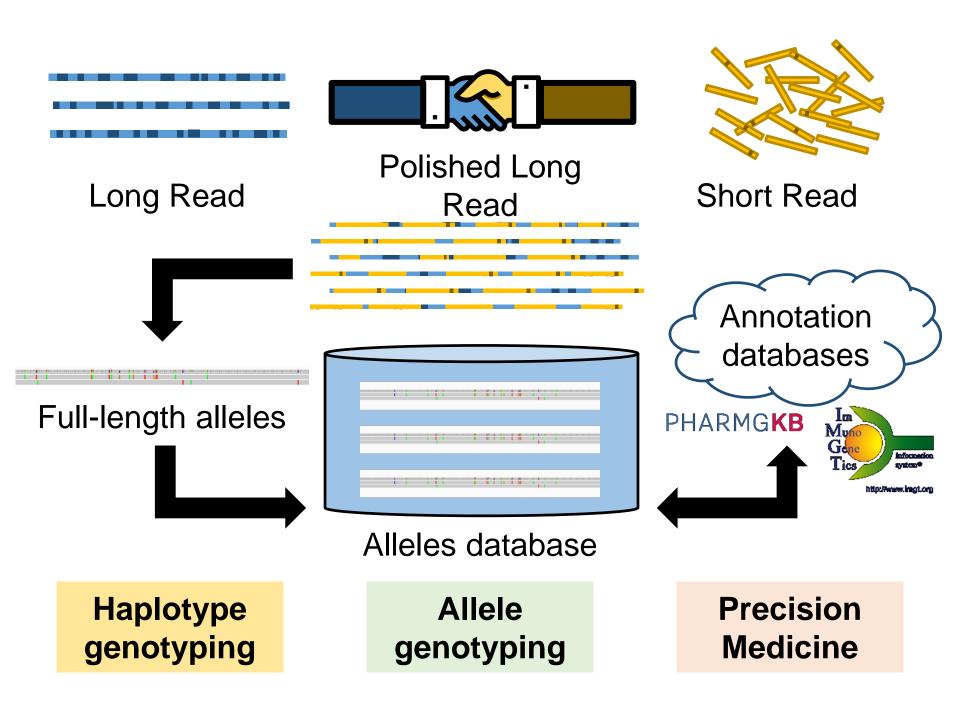
REPORTS

Cite as: D. Chowell et al., Science 10.1126/science.aao4572 (2017).

Science Duke University, Durham, North Carolina 27710, and [‡]Department of Microbiology and Imm School of Medicine, National University of Singapore, Singapore 117597

Tze Hau Lam,* Meixin Shen,* Matthew Zirui Tay,[†] and Ee Chee Ren*,^{‡,1}

*Singapore Immunology Network, A*STAR, Singapore 138648, [†]Department of Molecular Ge

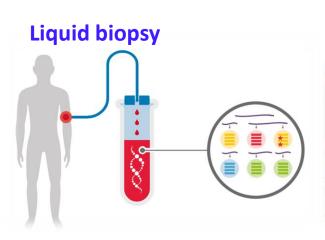

Immunotherapy(Antibody based and Cell based)

Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy

Diego Chowell, 1.2 Luc G.T. Morris, 2.3* Claud M. Grigg, ** Jeffrey K. Weber, 5 Robert M. Samstein, 1.2 Vladimir Makarov, 1.2 Fengshen Kuo, 1.2 Sviatoslav M. Kendall,^{1,2} David Requena,⁶ Nadeem Riaz,^{1,2,7} Benjamin Greenbaum,⁸ James Carroll,⁹ Edward Garon,⁹ David M. Hyman,^{10,14} Ahmet Zehir, 11 David Solit, 1,10,12 Michael Berger, 1,11,12 Ruhong Zhou, 5,13 Naiyer A. Rizvi, 4+ Timothy A. Chan1,2,7,14+

¹Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. ²Immunogenomics and Precision Oncology Platform,

Science. 2018 Feb 2;359(6375):582-587.



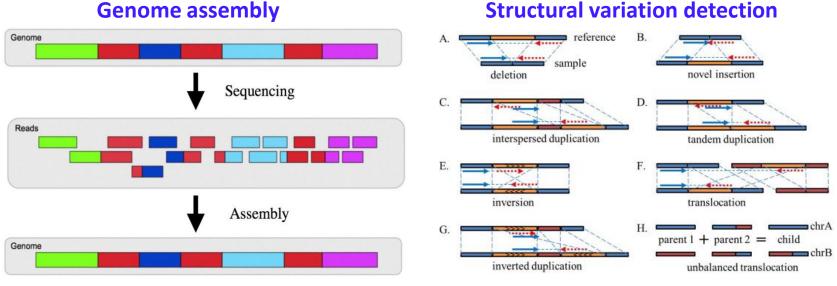
Sequencing Platform Comparison

Platform	Illumina	Thermo Fisher	Pacific Biosciences	Oxford Nanopore
Comparison				•
Sequencing by Synthesis	Yes	Yes	Yes	No
DNA Size Selection	Yes	Yes	Yes	No
Post-library Amplification	Yes	Yes	No, Single Molecule	No, Single Molecule
Detection	Fluorescent Imaging	Ion Semiconductor	Fluorescent Imaging	Ionic Current Change
Sequencing Rate (s/base)	2 – 20 sec	30 sec	0.25 sec	0.002 sec
Running Time	Fixed	Fixed	Fixed	Run & Stop
DNA Sequencing	Yes	Yes	Yes	Yes
Direct DNA Modification Detection	No	No	Yes	Yes
Direct RNA Sequencing	No	No	No	Yes
Read Length	Short, up to 300 bp X 2	Short, up to 600 bp	Long, Average 6-8 Kb	Long, Average 6-30 Kb
Total Reads (M)	4 – 800 (PE)	2 – 130	0.3 – 0.5	0.3 – 0.5
Total Base (Gb)	1.2 - 120	0.3 – 25 /Chip	5 – 8 /SMRT Cell	2 – 10 /Flow Cell
Instrument Cost (USD)	20K – 275K	200 – 300K	350K	1K – 125K

Applications Requiring Throughput (coverage)

- Liquid biopsy for diagnosis and prognosis
- Liquid biopsy for reproductive and genetic health
- Human genome resequencing
- Signal counting applications, such as gene expression profiling
- Detection of DNA mutation (diagnostic testing)

Resequencing


Coverage

https://www.inivata.com/liquid-biopsy/

Applications Requiring Long Reads

- Genome assembly (New resolution)
- Detection of structural variations
- Full genotyping of highly polymorphic loci

https://www.youtube.com/watch?v=5wvGapmA5zM

Methods. 2016 Jun 1;102:36-49.

Thank you for your attention

