中央研究院資訊科學研究所 INSTITUTE OF INFORMATION SCIENCE ACADEMIA SINICA



### High Throughput NGS Data Analysis

Bioinformatics Lab Wen-Lian Hsu

中央研究院資訊科學研究所 INSTITUTE OF INFORMATION SCIENCE ACADEMIA SINICA



# Kart -- An Ultra-fast NGS read mapping Algorithm

Bioinformatics Lab Wen-Lian Hsu

### Background

- Next-generation sequencing (NGS) allows biologists to investigate genome-wide variation at nucleotide resolution.
- NGS technologies can produce reads on the order of million/billion base-pairs in a single day.
- Many NGS applications require very fast alignment algorithms.



### How to deal with a mismatch in an alignment





### Normal Case Gapped alignment -- expensive

- Need to consider a huge number of options
- Use Dynamic Programming to manage your options --  $O(n^2)$  time.

### Easy Case Ungapped Alignment

 If we know that the best alignment only requires substitution (no gaps needed), then a linear scan will do -- O(n) time.









### A simple scoring scheme

- Match: +8 (W(x, y) = 8, if x = y)
- Mismatch: -5 (w(x, y) = -5, if  $x \neq y$ )
- Each gap symbol: -3 (w(-,x)=w(x,-)=-3)



### **Different Types of Sequence Alignments**

- Database Search
  - **BLAST**, FASTA, HMMER
- Pairwise/Multiple Sequence Alignment
  - ClustalW, T-Coffee, MAFFT
- Genomic Analysis
  - BLAT: to find regions in a target genomic database which are similar to a query sequence.
- Short Read Sequence Alignment
  - BWA, Bowtie, SOAP, MAQ,, GSNAP, SHRiMP



### Basic workflow for NGS data analysis





### Short read mapping





### Short read mapping

- Input:
  - A reference genome
  - A collection of short reads
- Output:
  - One or more genomic coordinates for each read
- The mapping sensitivity depends on the read quality and the similarity between the sample genome and the reference genome.



Existing methods Based on indexing strategy

• BWT/suffix array based

 Bowtie, BWA, BWA-SW, BWA-MEM, SOAPv2, CUSHAW, Subread, HISAT/HISAT2, HPG-aligner, segemehl

Hash table

 CloudBurst, Eland, MAQ, RMAP, SeqMap, SHRiMP, ZOOM, BFAST, NovoAlign, SSAHA, SOAPv1



### Challenges of DNA read mapping (I) Inexact matching



- A read may not exactly match any position in the reference genome.
- Such mismatches may represent
  - a SNP (single-nucleotide polymorphism) or
  - a sequencing error.



### Challenges of DNA read mapping (II) Multiple mapping



- A single read may occur more than once in the reference genome.
- The user may choose to ignore reads that appear more than *n* times.



### Challenges of DNA read mapping (III) Huge amount of data to be processed





### **Algorithm Overview**

Seed-and-extend

 Most aligners adopt seed-and-extend methodology (such as BLAST).

 Initiate an alignment with a seed and extend the alignment with different dynamic programming strategies.



### Seed-and-Extend





### **Our Strategy**

- Cluster close-by seeds together
- Eliminate overlapped seeds
- Map all remaining seeds simultaneously
- Extend parallel seeds to parallel segments
- Divide the read and align the remaining segments recursively

### **A Crucial Observation**

A MEM is a maximal exact match between them

Whenever you have two parallel MEMs, the region between them only has substitutions.

The probability of an exception is around 10<sup>-5</sup>



### **Divide and Conquer**





### **Divide and Conquer**



Assume you have 10 segments. Original DP takes  $n^2$  time. Now it takes 10 x  $(n/10)^2 = n^2/10$  time.

The more segments (longer), the more you save. Note, the colored segments are easy to align.



### Performance on real data

| Real dataset                                     | Aligner | Sensitivity     | Identical<br>base pairs | MEM (Gb) | Runtime |
|--------------------------------------------------|---------|-----------------|-------------------------|----------|---------|
| 00000450                                         | Kart    | 98.6            | 99                      | 12       | 158     |
| (40 millions)                                    | Bowtie2 | Bowtie2 97.4 99 |                         | 4.5      | 458     |
|                                                  | BWA-MEM | 98.8            | 97                      | 8.5      | 1157    |
|                                                  | HISAT2  | 86.0            | 99                      | 5.5      | 298     |
|                                                  |         |                 |                         |          |         |
| SRR826460II<br>lumina-<br>150bp<br>(40 millions) | Kart    | 99.3            | 149                     | 12       | 186     |
|                                                  | Bowtie2 | 98.4            | 149                     | 4.5      | 769     |
|                                                  | BWA-MEM | 99.3            | 147                     | 8.5      | 1374    |
|                                                  | HISAT2  | 91.9            | 149                     | 5.5      | 371     |



### Performance on real data

| Real dataset                    | Aligner      | Sensitivity | Identical<br>base pairs | MEM (Gb) | Runtime |
|---------------------------------|--------------|-------------|-------------------------|----------|---------|
| SRR826471<br>Illumina-<br>250bp | Kart         | 98.6        | 237                     | 12       | 395     |
|                                 | Bowtie2 94.7 |             | 237                     | 4.5      | 1729    |
| (34 millions)                   | BWA-MEM      | 98.6        | 220                     | 8.5      | 3027    |
|                                 |              |             | -                       |          |         |
| M130929<br>PacBio-<br>7118bp    | Kart         | 100.0       | 5152                    | 13       | 1811    |
|                                 | BWA-MEM      | 90.7        | 2953                    | 9        | 7338    |
|                                 | LAST         | 97.2        | 5022                    | 15       | 31295   |
| (1.2 millions)                  | BLASR        | 97.8        | 5389                    | 28.9     | 18682   |



# The average size of segments requiring gapped alignment

| Dataset   | LMEM-seed  | LMEM-seed 8-LMEM- NP-gap<br>free free |      | EM-seed 8-LMEM- NP-gap NP-inc |      | NP-indels | NP-NW |
|-----------|------------|---------------------------------------|------|-------------------------------|------|-----------|-------|
| SRR622458 | Ave<br>req | ents<br>ent                           | 17.5 |                               |      |           |       |
| SRR826460 | 112.7      | 13.7                                  | 4.5  | 1.9                           | 19.5 |           |       |
| SRR826471 | 104.2      | 12.4                                  | 7.5  |                               | 22.8 |           |       |
| M130929   | 21.3       | 12.4                                  | 10.8 | 1.4                           | 21.3 |           |       |



中央研究院資訊科學研究所 INSTITUTE OF INFORMATION SCIENCE ACADEMIA SINICA



### DART -- A fast and robust alignment algorithm for RNA reads

Bioinformatics Lab Wen-Lian Hsu

### DART

- Other DNA mappers only consider continuous alignment and cannot be used for RNA-seq.
- Kart can be easily adapted for RNA-seq
  - we consider fragmented alignment
- The same divide and conquer strategy can be extended to RNA-sequencing
  - Identify simple pairs and normal pairs (Divide)
  - Find the best alignment for each pair (Conquer)





 RNA-Seq technologies is a powerful tool to provide high resolution measurement of expression and high sensitivity in detecting low abundance transcripts.





### Challenges of RNA-seq alignment

• The alignment of the corresponding RNA-seq read against the reference genome is not contiguous and it is separated by large gaps.





### **Existing methods**

- QPALMA
- TopHat / TopHat2
- GSNAP
- PALMapper
- MapSplice
- RUM
- GEM
- STAR
- HISAT/HISAT2
- Subread



### **Algorithm Overview**



(B) Spanned read



### Performance on simulation data

| Synthetic<br>datasets | Aligner    | Sensitivity | Accuracy | Recall  | SJ<br>accuracy | Runtime  |
|-----------------------|------------|-------------|----------|---------|----------------|----------|
|                       | DART       | 0.991       | 0.989    | 0.957   | 0.969          | 71       |
|                       | STAR       | 0.978       | 0.981    | 0.958   | 0.935          | 129      |
|                       | TopHat2    | 0.852       | 0.961    | 0.853   | 0.918          | 6172     |
| SimRead_76            | Subread    | 0.965       | 0.988    | 0.929   | 0.964          | 2610     |
|                       | MapSplice2 | 0.962       | 0.976    | 0.940   | 0.967          | 3602     |
|                       | HISAT2     | 0.911       | 0.977    | 0.889   | 0.964          | 353      |
|                       | DART       | 0.992       | 0.988    | 0.965   | 0.968          | 95       |
|                       | STAR       | 0.977       | 0.982    | 0.958   | 0.936          | 154      |
| SimRead_101           | TopHat2    | 0.809       | 0.967    | 0.809   | 0.912          | 10357    |
|                       | Subread    | 0.955       | 0.987    | 0.925   | 0.961          | 2346     |
|                       | MapSplice2 | 0.979       | 0.980    | 0.960   | 0.948          | 4736     |
|                       | STAR is    | s the mo    | ost read | paper i | n Bioint       | formatio |



### Performance on real data

| Real datasets                 | Aligner    | Sensitivity | Seq Identity | SJ accuracy | Runtime |  |
|-------------------------------|------------|-------------|--------------|-------------|---------|--|
|                               | DART       | 0.975       | 0.999        | 0.634       | 244     |  |
|                               | STAR       | 0.922       | 0.996        | 0.562       | 270     |  |
| SRR3351428<br>(58.6 millions) | TopHat2    | 0.844       | 0.998        | 0.673       | 22464   |  |
| 100 bp                        | Subread    | 0.858       | 0.998        | 0.661       | 3312    |  |
|                               | MapSplice2 | 0.966       | 0.996        | 0.620       | 67446   |  |
|                               | HISAT2     | 0.883       | 0.998        | 0.865       | 404     |  |
|                               | DART       | 0.874       | 0.997        | 0.636       | 369     |  |
|                               | STAR       | 0.841       | 0.987        | 0.606       | 371     |  |
| ERR1518881                    | TopHat2    | 0.640       | 0.995        | 0.680       | 21185   |  |
| (66.6 millions)               | Subread    | 0.759       | 0.992        | 0.660       | 4008    |  |
| 100 Бр                        | MapSplice2 | 0.893       | 0.988        | 0.680       | 15021   |  |
|                               | HISAT2     | 0.756       | 0.993        | 0.833       | 480     |  |

### Performance on real data

| Real datasets                 | Aligner    | Sensitivity | Seq Identity | SJ accuracy | Runtime |
|-------------------------------|------------|-------------|--------------|-------------|---------|
|                               | DART       | 0.930       | 0.996        | 0.655       | 481     |
|                               | STAR       | 0.841       | 0.992        | 0.626       | 594     |
| SRR3439468<br>(88.5 millions) | TopHat2    | NA          | NA           | NA          | NA      |
| (00.5 minoris)<br>150 bp      | Subread    | NA          | NA           | NA          | NA      |
|                               | MapSplice2 | 0.930       | 0.990        | 0.718       | 49320   |
|                               | HISAT2     | 0.482       | 0.994        | 0.797       | 1306    |
|                               | DART       | 0.899       | 0.995        | 0.790       | 427     |
| SRR3439488                    | STAR       | 0.775       | 0.990        | 0.761       | 813     |
| (64.5 MIIIONS)<br>250 bp      | TopHat2    | NA          | NA           | NA          | NA      |
| 230 bp                        | Subread    | NA          | NA           | NA          | NA      |
|                               | MapSplice2 | 0.851       | 0.989        | 0.705       | 36240   |
|                               | HISAT2     | 0.657       | 0.994        | 0.833       | 703     |



#### 中央研究院資訊科學研究所 INSTITUTE OF INFORMATION SCIENCE ACADEMIA SINICA



#### Application to whole genome alignment

Bioinformatics Lab Wen-Lian Hsu

### **Genome Sequence Comparison**

Problem definition

– Pairwise genome sequence alignment

- Challenges
  - Extremely long sequence length
  - Repetitive sequences
  - Sequence variations



### WGAlign

- Input: Genome sequences G1 and G2
- Algorithm outlines
  - Index G1
  - Search simple pairs with G2 against G1 (parallel)
  - Cluster simple pairs
  - Fill gaps between simple pairs (parallel)
  - Generate sub-alignments of each normal pairs (parallel)
- Output: whole genome alignment, structural variants, dot plot.



### WGAlign







# Experiment result on real dataset

| Dataset                         | Method  | Precision |       | Recall |       | Memory<br>(in MB) | Run<br>Time |
|---------------------------------|---------|-----------|-------|--------|-------|-------------------|-------------|
|                                 |         | Sub       | Indel | Sub    | Indel |                   |             |
| HG38 vs<br>NA12878<br>(Diploid) | GSAlign | 0.836     | 0.306 | 0.928  | 0.311 | 15,121            | 282         |
|                                 | MUMmer4 | 0.802     | 0.333 | 0.905  | 0.326 | 56,652            | 136,825     |





### Whole Genome Alignment

| #Identity = 23904 / 25846 | (92.48%) |                                                                                   |
|---------------------------|----------|-----------------------------------------------------------------------------------|
| H_pyloriJ99_Eslice        | 52       | CTCAAGAAATGCTCAATAGAGCT-AACGCTCAAGCAGAGATTTTGAGCTTAGCCCAACAAGTAGCGGACAATTTCCACAG  |
| H_pylori26695_Eslice      | 9380     | CTCAAGAAATGCTCAATAGAGCTGAA-GCTCAAGCAGAGATTTTAAATTTAGCTAAGCAAGTAGCGAACAATTTCCACAG  |
| H_pyloriJ99_Eslice        | 131      | CATTCAAGGGCCTATCCAACAAGATCTAGAAGAATGCACCGCAGGATCAGCTGGTGTGATTAACGACAACACTTATG     |
| H_pylori26695_Eslice      | 9459     | CATTCAAGGGCCTATTCAAGGGGATTTAGAAGAATGTAAAGCAGGATCGGCTGGCGTGATCACTAATAACACTTGGG     |
| H_pyloriJ99_Eslice        | 208      | GTTCAGGTTGCGCGTTTGTGAAAGAGACTCTCAATTCCTTAGAGCAACACCCGCTTATTATGGCAACCAGGTCAATCAG   |
| H_pylori26695_Eslice      | 9536     | GTTCAGGTTGCGCGTTTGTGAAAGAAACTTTAAACTCTTTAGAGCAACACCGCTTATTACGGCAACCAGGTCAATCAG    |
| H_pyloriJ99_Eslice        | 288      | GATAGGGCTTTGTCTCAAACCATTTTGAATTTTAAAGAAGCCCTTAGCACTTTAGGGAACGACTCAAAAGCGATCAATAG  |
| H_pylori26695_Eslice      | 9616     | GATAGGGCTTTGGCTCAAACCATTTTGAATTTTAAAGAAGCCCTTAACACCCTGAATAAAGACTCAAAAGCGATCAATAG  |
| H_pyloriJ99_Eslice        | 368      | CGGTATCTCTAACTTGCCTAACGCTAAGTCCCTTCAAAACATGACGCATGCCACTCAAAACCCTAATTCCCCAGAAGGTT  |
| H_pylori26695_Eslice      | 9696     | CGGTATCTCCAACTTGCCTAACGCTAAATCTCTTCAAAACATGACGCATGCCACTCAAAACCCTAATTCCCCAGAAGGTC  |
| H_pyloriJ99_Eslice        | 448      | TGCTCACTTATTCTTTGGATACCAGCAAATACAACCAGCTCCAAACTGTTGCGCAAGAATTAGGCAAAAAACCCCTTTAGG |
| H_pylori26695_Eslice      | 9776     | TGCTCACTTATTCTTTGGATTCAAGCAAATACAACCAGCTCCAAACCATCGCGCAAGAATTGGGCAAAAAACCCTTTCAGG |
| H_pyloriJ99_Eslice        | 528      | CGCATCGGCGTGATTAACTATCAAAAACAATAACGGGGCGATGAACGGCATCGGCGTGCAAGCGGGCTATAAGCAATTCTT |
| H_pylori26695_Eslice      | 9856     | CGCTTTGGCGTGATTGACTTTCAAAACAACAACGGCGCGAATGAACGGGATCGGCGTGCAAGTGGGTTATAAACAATTCTT |
| H_pyloriJ99_Eslice        | 608      | TGGCAAAAAAAGGAATTGGGGGTTAAGGTATTATGGTTTCTTTGATTATAACCATGCTTATATCAAATCTAATTTTTTA   |
| H_pylori26695_Eslice      | 9936     | TGGTAAAAAAAGGAATTGGGGGTTAAGGTATTATGGTTTCTTTGATTATAACCATGCTTATATCAAATCTAATTTTTTCA  |



### **SNP** Calling



### **INDELS** Calling

Ind#209 Query=H\_pyloriJ99\_Eslice :251129 Ref=H\_pylori26695\_Eslice:261176 Q: ATTCTTTTGGCATCATATCCTAATAATTA-ATCTA---GCTTTTAAAATGGCCTTGATTATAACTAA R: ATTCTTTTTGACATCGCATCCTAATAACTATAGCTATTCAGCTTTTAAAATAGCTTTGATTATAACTAA

Ind#210 Query=H\_pyloriJ99\_Eslice :251210 Ref=H\_pylori26695\_Eslice:261262
Q: TAACACAGCCCTAATTTTAGGGGAAGTTAAAGAGCGTTTGAGCGTTATGCGTGCT
R: TAACACAGCC-TTATTTTAGGGGAAACTAAAGAGCATTTGAGCGTTATGCGTGCT

Ind#212 Query=H\_pyloriJ99\_Eslice :255072 Ref=H\_pylori26695\_Eslice:266131
Q: GCCCGGTTTCAATACAGGTTTTAT----TGAT----CGCAGTCAAAACCTCTTTGGCTTTCAAAAAAGCCTTGGAAAGTTCAGCGATGATTTCAT
R: GCCCGGTTTCTATGCAGGTTTTATAAGCTTGATGGATCGTAGTCAAAAACTTCTTGGGCTTTCAAAAAAGCCTTTGAAAGCTCAACAATGATTTCAT

Q: ATTGGATTTAATTGGTATTTTGTTTTGGGTATTATAGCAAAAGA

R: ATTGGATTTA----GTATTTTCACT----ATTATAGCAAAAGA

### **Dot Plotting**





## Q & A



