Short- and long-term prediction of extremely hot days due to climate change and related attributable mortality

CHU-CHIH CHEN INSTITUTE OF POPULATION HEALTH SCIENCES NATIONAL HEALTH RESEARCH INSTITUTES, TAIWAN Temperature and prolonged extremes & mortality in elderly

Lin et al. (2011) Environ Res

Statistical model: **DLNM** 

Data: 1994-2007, age ≧65 y

RR: daily mean temp.



## Hot days during June-September in Taiwan since 1951 (baseline period 1961-1990)



Trend of cold days (daily minimum) in winter (Dec.-Feb.) due to climate change (Taipei)

winter days ≤ 5% level 10.3°C





### Why short-term prediction?



Actual 2017 Hot days ( > 30 °C ) in summer



#### Summer: June - September

### Why short-term prediction?

Actual 2010 Hot days ( > 30 °C ) in summer



#### Actual 2017 Hot days ( > 30 °C ) in summer



#### Summer: June - September

### Data sources

- 台灣颱風洪水研究中心 Data Bank for Atmospheric & Hydrologic Research service, Taiwan Typhoon and Flood Research Institute, National Applied Research Laboratories – daily 24 hr temperature 1951-2017
- 臺灣氣候變遷推估與資訊平台 Taiwan Climate Change and Information Platform (TCCIP) – IPCC RCP8.5 simulation outcomes for daily maximum temp (personal communication)
- 中央氣象局 Central Weather Bureau of Taiwan monthly Nino3.4 index
- 内政部 Ministry of Interior of Taiwan -- population size during 2010-2017 and national mortality data during 1995-2008
- 王玉純教授 Prof. Yu-Chun Wang -- City/county-specific relative risks (RRs) of all-cause, cardiovascular, and respiratory mortality per 1°C increase

## Meteorological stations and historical data in Taiwan



Background: Daily meteorological measurements of a total of 36 Central Weather Bureau (CWB) stations in Taiwan since 1890.

Data: Hourly temperature records of 24 CWB stations with complete data and monthly nino3.4 indices during 1951-2016 were used for the analysis.

Percentiles of the reference period 1961-1990 95%: 33.4°C 90%: 32.5°C 10%: 12.5°C 5%: 10.3°C

## Prediction of days with high temperature extremes

Short-term prediction (2018-2020): using time-series statistical model based on historical observation data from 1951-2016 from 36 CWB stations across Taiwan.

Mid- & long-term prediction (2021-2060): using statistical downscaling based on IPCC AR5 climate model simulations for scenarios rcp2.6, 4.5, 6.0 & 8.5.

Reference period: 2000-2010

# Short-term prediction of extremely hot days due to climate change & ENSO

## Geological location of Taiwan & Nino3.4



## Association between lagged Nino3.4 index & hot days in June-Sept.



## Division of Nino-impacted zones in Taiwan



We divided Taiwan into 7 ENSOimpacted zones based on geographical homogeneity of neighboring counties.

A single ENSO effect function f(Nino3.4, l; T, k) was shared for cities/counties fall within the same zone.

## State-space prediction model for number of hot days in June-September

Let the days of exceeding the daily average temperature T of year k be

$$Y_{T,k} = \mu_{T,k} + f(Nino3.4, l; T, k) + X_{T,k} + \nu_{T,k}$$

where

 $v_{T,k}$ 

 $\mu_{T,k}$  : trend due to climate change

f(Nino3.4, l; T, k): mean-adjusted nonlinear function of Nino3.4 index of lagged month /

 $X_{T,k}$  : stationary time series variation not explained by the first two factors

: observational error ~ 
$$N(0, \sigma_{obs}^2)$$

## Approximation for climate change trend & process error

Taylor's expansion:

$$\mu_{T,k} = g_T(k) + e_{T,k}^* \cong g_T(k-1) + g_T'(k-1) * [k - (k-1)] + e_{T,k}^*$$
$$\cong 2\mu_{T,k-1} - \mu_{T,k-2} + e_{T,k}$$

where  $e_{T,k}$  is the process error, which is assumed to be normally distributed with a mean 0 and variance  $\sigma_{proc}^2$ .

### Estimation methods

A locally weighted scatter plot smoothing (LOESS) regression was applied to estimate f(Nino3.4, l; T, k)

- > Similarly, the initial values of  $\mu_{T,k}$  were obtained from LOESS estimates.
- > The variation  $X_{T,k}$  is assumed to follow an AR(2) model
- OpenBUGS 3.2-3.1 software using Bayesian MCMC simulations was employed for the estimation.

### Estimated trend of the number of days with mean temperature >30°C after adjusting for the effect of lagged Nino3.4 index at 8 months



## Average differences between predicted vs. observed hot days 2015-2017

| Station<br>Year /<br>Temperature | Tonghou | Xinwu | Zhunan | Huwei | Banqiao | Tamsui | Taipei | Keelung | Hualien | Suao | Yilan | Dongjidao | Penghu | Tainan | Yongkang | Kaohsiung | Chiayi | Taichung | Dawu | Hsinchu | Hengchun | Chengkung | Taitung | Wuqi |
|----------------------------------|---------|-------|--------|-------|---------|--------|--------|---------|---------|------|-------|-----------|--------|--------|----------|-----------|--------|----------|------|---------|----------|-----------|---------|------|
| ≥ 26 °C                          | 4       | 0     | 0      | 3     | 2       | 4      | 1      | 0       | -1      | 1    | 2     | 0         | -1     | 2      | -2       | 1         | 1      | 2        | -1   | 1       | 0        | 0         | -1      | 1    |
| ≥ 27 °C                          | 2       | 0     | -1     | 7     | 1       | 4      | 4      | 1       | 0       | 3    | 2     | 0         | 0      | 3      | -1       | 1         | 5      | 3        | -1   | 5       | -2       | 3         | 1       | 4    |
| ≥ 28 °C                          | 3       | -3    | 1      | 13    | 0       | 5      | 3      | 1       | -1      | 5    | 5     | -2        | 2      | 3      | -2       | -1        | 4      | 1        | 1    | 7       | -2       | 5         | -1      | 5    |
| ≥ 29 °C                          | 5       | -3    | 0      | 11    | 4       | 6      | 3      | 2       | -1      | 5    | 2     | 1         | -3     | 4      | -2       | -2        | 1      | 2        | -1   | 7       | -6       | 8         | 0       | 3    |
| ≥ 30 °C                          | NA      | 1     | 1      | 9     | 11      | 2      | 4      | 0       | -1      | 0    | 0     | 0         | 1      | 0      | -3       | -8        | -3     | 1        | 4    | 2       | -8       | 2         | -2      | 1    |
| ≥ 31 °C                          | NA      | 1     | -1     | 2     | 2       | 0      | -1     | -2      | NA      | 0    | 0     | NA        | 0      | 0      | -1       | -3        | -1     | 1        | 0    | -2      | -1       | NA        | 2       | NA   |
| ≥ 32 °C                          | NA      | NA    | NA     | NA    | 0       | 1      | -2     | -1      | NA      | NA   | NA    | NA        | NA     | NA     | NA       | 0         | NA     | NA       | 0    | 0       | NA       | NA        | NA      | NA   |
|                                  | -       | 8~-6  |        | -5    | ~ -3    |        | -2 '   | ~ +2    |         | +3 ^ | ° +7  |           | +8 ~   | +13    |          | NA        |        |          |      |         |          |           |         |      |

 $\approx$  70% cells were within prediction errors  $-2 \sim + 2$  days

Predicted number of days with ave. temperature >30 °C (June-Sept.) in (a) 2018; (b) 2019; and (c) 2020.



### Health risk assessment due to climate change

WHO的比較風險評估(comparative risk assessment, CRA)的做法,探 討全球疾病負荷(Global burden of disease)中有關氣候變遷的各項危 險因子的可歸因風險,計算在不同暴露情境如每日均溫的改變下, 所導致的可歸因全死因,以及呼吸道疾病、心血管疾病死亡,以及 急診、住院人數,與壽命損失年(Years of Life Lost, YLLs),以及急診、 住院等的失能調整生命年(Disability-adjusted Life-years, DALYs)。

![](_page_19_Figure_2.jpeg)

### Attributable mortality (AM) 計算方法

可歸因死亡(attributable mortality, AM) (或morbidity 急診、住院)人 數的計算  $AM_{ij}(T; y, z) = PAF_{M_{ij}}(T; z) \times M_{ij}(z) \times Pop(y, z)$ 

可歸因人口比例 (population attributable fraction) PAF

$$PAF_{M_{ij}}(T;\mathbf{z}) = \frac{\int_{T}^{m} RR_{M_{ij}}(x;\mathbf{z})P(x)dx - \int_{T}^{m} RR_{M_{ij}}(x;\mathbf{z})P'(x)dx}{\int_{T}^{m} RR_{M_{ij}}(x;\mathbf{z})P(x)dx}$$

其中 P(x), P'(x) 分別為未來預估 (短期: 2018~2020; 中長期:

2021~2060) 與相對基期 (2001~2010)的機率分布, RR 為 relative risk, T 為 threshold , Pop 為預估未來(65歲以上老年)人口數,M 為 mortality rate

![](_page_20_Figure_6.jpeg)

### 可歸因人口比例 PAF 計算

$$PAF = \frac{\int_{T}^{m} RR(x)P(x)dx - \int_{T}^{m} RR(x)P'(x)dx}{\int_{T}^{m} RR(x)P(x)dx} = 1 - \frac{\int_{T}^{m} RR(x)P'(x)dx}{\int_{T}^{m} RR(x)P(x)dx}$$

 $\int_{T}^{m} RR(x)P(x)dx \cong \sum_{l=27}^{32} RR(l)[P(Tmpt \ge l-1) - P(Tmpt \ge l)]$ 

$$\cong \sum_{l=27}^{32} RR(l) \left( \hat{y}_{l-1,k} - \hat{y}_{l,k} \right)$$

此處  $T = 26^{\circ}C, m = 32^{\circ}C, RR(k), 2619個縣市的全死因、心血管、呼吸$ 道疾病死因每度變化的RR

### 台灣地區人口分布現況(×104)

Population of administrative divisions, end of 2016

![](_page_22_Figure_2.jpeg)

## RR & PAF計算行政區域劃

各測站RR值

![](_page_23_Figure_2.jpeg)

各縣市PAF值

![](_page_23_Figure_4.jpeg)

## 2018年各縣市預測高溫可歸因死亡人口比例 (PAF) (全死因、心血管、呼吸道疾病)

### (reference period 2001-2010)

![](_page_24_Figure_2.jpeg)

![](_page_24_Figure_3.jpeg)

PAF of Deaths from Circulatory diseases, 2018

PAF of Deaths from Respiratory diseases, 2018

![](_page_24_Figure_6.jpeg)

## 2018年各縣市預測高溫可歸因死亡人數高溫可歸因死亡人數(全死因、心血管、呼吸道疾病)

### (reference period 2001-2010)

![](_page_25_Figure_2.jpeg)

Mean projected numbers of attributable mortality of (a) overall; (b) circulatory diseases; (c) respiratory diseases in 2018-2020 (reference period 2001-2010) (Per 100 Km<sup>2</sup>)

![](_page_26_Figure_1.jpeg)

Mean projected heat-related attributable mortalities for Taipei/New Taipei, Taichung, Kaohsiung, and Hualien in 2018-2020

| City/County          | Area (km²) | Population | Attributable mortality |                   |                   |  |  |  |
|----------------------|------------|------------|------------------------|-------------------|-------------------|--|--|--|
|                      |            |            | All causes             | Circulatory       | Respiratory       |  |  |  |
| Taipei/New<br>Taipei | 2324.4     | 6,674,912  | 3,107<br>(133-7,859)   | 741<br>(24-2,077) | 311<br>(10-1,122) |  |  |  |
| Taichung             | 2214.9     | 2,767,239  | 473 (6-1,256)          | 130 (2-386)       | 58 (3-223)        |  |  |  |
| Kaohsiung            | 2951.9     | 2,779,371  | 1,344<br>(426-2,169)   | 295 (39-576)      | 226 (50-426)      |  |  |  |
| Hualien              | 4628.6     | 330,911    | 145 (89-270)           | 35 (15-80)        | 9 (3-34)          |  |  |  |

# Mid (1921-1940) & long-term (1941-1960) prediction of extremely hot days due to climate change

| CMIP5          | CMIP5 Daily  |         | Atmosphere  |            |        |        |        |        |  |  |  |  |
|----------------|--------------|---------|-------------|------------|--------|--------|--------|--------|--|--|--|--|
| Model          | Institute    | RES.    | 格點大小        | historical | rcp26  | rcp45  | rcp60  | rcp85  |  |  |  |  |
| ACCESS1-0      |              | 192x145 | 1.875x1.241 | 0          |        | 0      | -      | 0      |  |  |  |  |
| ACCESS1-3      | CSIRO-BOM    | 192x145 | 1.875x1.241 | 0          |        | 0      |        | 0      |  |  |  |  |
| bcc-csm1-1     | <b>D</b> 00  | 128x64  | 2.813x2.813 | 0          | 0      | 0      | 0      | 0      |  |  |  |  |
| bcc-csm1-1m    | BCC          | 320x160 | 1.125x1.125 | 0          | 0      | 0      | 0      | 0      |  |  |  |  |
| BNU-ESM        | BNU          | 128x64  | 2.813x2.813 | 0          | 0      | 0      |        | 0      |  |  |  |  |
| CanESM2        | CCCMA        | 128x64  | 2.813x2.813 | 0          | 0      | 0      |        | 0      |  |  |  |  |
| CCSM4          | NCAR         | 288x192 | 1.25x0.938  | 0          | 0      | 0      | 0      | 0      |  |  |  |  |
| CESM1-BGC      | NCAD         | 288x192 | 1.25x0.938  | 0          |        | 0      |        | 0      |  |  |  |  |
| CESM1-CAM5     | NCAR         | 288x192 | 1.25x0.938  | 0          | 0      | 0      | 0      | 0      |  |  |  |  |
| CMCC-CESM      |              | 96x48   | 3.75x3.75   | 0          |        |        |        | 0      |  |  |  |  |
| CMCC-CM        | CMCC         | 480x240 | 0.75x0.75   | 0          |        | 0      |        | 0      |  |  |  |  |
| CMCC-CMS       |              | 192x96  | 1.875x1.875 | 0          |        | 0      |        |        |  |  |  |  |
| CNRM-CM5       | CNRM-CERFACS | 256x128 | 1.406x1.406 | 0          | 0      | 0      |        | 0      |  |  |  |  |
| CSIRO-Mk3-6-0  | CSIRO-QCCCE  | 192x96  | 1.875x1.875 | 0          | 0      | 0      | 0      | 0      |  |  |  |  |
| EC-EARTH       | ICHEC        | 320x160 | 1.125x1.125 | 0          |        | Δ      |        | 0      |  |  |  |  |
| FGOALS-g2      | LASG-CESS    | 128x60  | 2.813x3     | 0          | 0      | 0      |        | 0      |  |  |  |  |
| GFDL-CM3       |              | 144x90  | 2.5x2       | 0          | 0      | Δ      | 0      | 0      |  |  |  |  |
| GFDL-ESM2G     | NOAA-GFDL    | 144x90  | 2.5x2       | 0          | 0      | 0      | 0      | 0      |  |  |  |  |
| GFDL-ESM2M     |              | 144x90  | 2.5x2       | 0          |        | 0      | 0      | 0      |  |  |  |  |
| HadGEM2-AO     |              | 192x145 | 1.875x1.241 | 0          | 0      | 0      | 0      | 0      |  |  |  |  |
| HadGEM2-CC     | MOHC         | 192x145 | 1.875x1.241 | 0          |        | 0      |        | 0      |  |  |  |  |
| HadGEM2_ES     |              | 192x145 | 1.875x1.241 | 0          | 0      | 0      | 0      | 0      |  |  |  |  |
| inmcm4         | INM          | 180x120 | 2x1.5       | 0          |        | 0      |        | 0      |  |  |  |  |
| IPSL-CM5A-LR   |              | 96x96   | 3.75x1.875  | 0          | 0      | 0      | 0      | 0      |  |  |  |  |
| IPSL-CM5A-MR   | IPSL         | 144x143 | 2.5x1.259   | 0          | 0      | 0      | 0      | 0      |  |  |  |  |
| IPSL-CM5B-LR   |              | 96x96   | 3.75x1.875  | 0          |        | 0      |        | 0      |  |  |  |  |
| MIROC5         |              | 256x128 | 1.406x1.406 | 0          | 0      | 0      | 0      | 0      |  |  |  |  |
| MIROC-ESM      | MIROC        | 128x64  | 2.813x2.813 | 0          | 0      | 0      | 0      | 0      |  |  |  |  |
| MIROC-ESM-CHEM |              | 128x64  | 2.813x2.813 | 0          | 0      | 0      | 0      | 0      |  |  |  |  |
| MPI-ESM-LR     | MPI-M        | 192x96  | 1.875x1.875 | 0          | 0      | 0      |        | 0      |  |  |  |  |
| MPI-ESM-MR     | 1411-1-141   | 192x96  | 1.875x1.875 | 0          | 0      | 0      |        | 0      |  |  |  |  |
| MRI-CGCM3      | MDI          | 320x160 | 1.125x1.125 | 0          | 0      | 0      | 0      | 0      |  |  |  |  |
| MRI-ESM1       | IVITXI       | 320x160 | 1.125x1.125 | 0          |        |        |        | 0      |  |  |  |  |
| NorESM1-M      | NCC          | 144x96  | 2.5x1.875   | 0          | 0      | 0      | 0      | 0      |  |  |  |  |
|                |              |         | Total:      | 34(30)     | 22(21) | 32(28) | 17(16) | 33(30) |  |  |  |  |

• 8種模式列表

| CMIP5 Daily |           | Atmosphere |          |            |       |       |       |       |  |  |
|-------------|-----------|------------|----------|------------|-------|-------|-------|-------|--|--|
| Model       | Institute | RES.       | calendar | historical | rcp26 | rcp45 | rcp60 | rcp85 |  |  |
| bcc-csm1-1m | BCC       | 320x160    | 365      | 0          | 0     | 0     | 0     | 0     |  |  |
| CCSM4       | NCAR      | 288x192    | 365      | 0          | 0     | 0     | 0     | 0     |  |  |
| CESM1-BGC   |           | 288x192    | 365      | 0          |       | 0     |       | 0     |  |  |
| CESM1-CAM5  | NCAR      | 288x192    | 365      | 0          | 0     | 0     | 0     | 0     |  |  |
| CMCC-CM     | СМСС      | 480x240    | standard | 0          |       | 0     |       | 0     |  |  |
| EC-EARTH    | ICHEC     | 320x160    | standard | 0          |       |       |       | 0     |  |  |
| MRI-CGCM3   | MDI       | 320x160    | standard | 0          | 0     | 0     | 0     | 0     |  |  |
| MRI-ESM1    | MRI       | 320x160    | standard | 0          |       |       |       | 0     |  |  |
|             |           |            | Total:   | 8          | 4     | 6     | 4     | 8     |  |  |

![](_page_31_Figure_0.jpeg)

![](_page_31_Figure_1.jpeg)

![](_page_31_Figure_2.jpeg)

• 假設存在一轉換式T[0,1] → [0,1]使得測站歷史資料CDF分布可轉換至月平均 CDF分布。

轉換式T使得:  

$$T(F_{Xc}(X)) = F_{Yc}(X)$$
 且  

$$T(F_{Xp}(X)) = F_{Yp}(X)$$
令①式中  $F_{Xc}(X) = u \rightarrow X = F_{Xc}^{-1}(u)$ 
 $T(u) = F_{Yc}(F_{Xc}^{-1}(u))$ 
 $F_{Yp}(X) = T(F_{Xp}(X)) = F_{Yc}(F_{Xc}^{-1}(F_{Xp}(X)))$ 

$$T(u) = F_{Yc}(F_{Xc}^{-1}(F_{Xp}(X)))$$

X<sub>c</sub>:氣候模式過去(1961-2005)的輸出值(Model輸出之歷史每日最高溫度CDF)
 X<sub>p</sub>:氣候模式未來(2006-2100)的預測值(Model輸出之未來每日最高溫度CDF)
 Y<sub>c</sub>:當地測站過去(1961-2005)資料(CWB逐日CDF)
 Y<sub>p</sub>:當地測站未來氣溫(2005-2100)推估值(逐日CDF)

Michelangeli et al. (2009) 機率降尺度法 (Probabilistic Downscaling) CDF-t

V

2021-2030

#### 2041-2050

2051-2060

bcc-csm1-1-m

![](_page_33_Figure_5.jpeg)

#### CCSM4

![](_page_33_Figure_7.jpeg)

![](_page_33_Picture_8.jpeg)

![](_page_33_Picture_9.jpeg)

RCP85\_modelB\_60\_95

![](_page_33_Picture_11.jpeg)

#### Predict Temperature

| 40 |
|----|
| 38 |
| 36 |
| 34 |
| 32 |
| 30 |
| 25 |
| 20 |

#### 2031-2040

2041-2050

2051-2060

CESM1-BGC

![](_page_34_Figure_5.jpeg)

![](_page_34_Figure_6.jpeg)

![](_page_34_Figure_7.jpeg)

![](_page_34_Figure_8.jpeg)

Predict Temperature

| 40 |
|----|
| 38 |
| 36 |
| 34 |
| 32 |
| 30 |
| 25 |
| 20 |

### CESM1-CAM5

![](_page_34_Figure_12.jpeg)

RCP85\_modelD\_40\_95

V,

![](_page_34_Picture_14.jpeg)

RCP85\_modelD\_50\_95

7

RCP85\_modelD\_60\_95

![](_page_34_Picture_17.jpeg)

#### 2031-2040

2041-2050

2051-2060

CMCC-CM

![](_page_35_Figure_5.jpeg)

![](_page_35_Figure_6.jpeg)

![](_page_35_Figure_7.jpeg)

![](_page_35_Figure_8.jpeg)

Predict Temperature

![](_page_35_Figure_10.jpeg)

### EC-EARTH

![](_page_35_Figure_12.jpeg)

RCP85\_modelF\_40\_95

V.

![](_page_35_Picture_14.jpeg)

RCP85\_modelF\_60\_95

![](_page_35_Picture_16.jpeg)

2031-2040

2041-2050

2051-2060

MRI-CGCM3

![](_page_36_Figure_5.jpeg)

![](_page_36_Figure_6.jpeg)

![](_page_36_Figure_7.jpeg)

#### MRI-ESM1

![](_page_36_Figure_9.jpeg)

![](_page_36_Figure_10.jpeg)

![](_page_36_Figure_11.jpeg)

RCP85\_modelH\_50\_95

RCP85\_modelH\_60\_95

![](_page_36_Picture_13.jpeg)

### Future work

• Model ensemble for the simulation outcomes of 8 GCM models

- Other data sources, e.g., population projection for 2021-2060
- Further epidemiological study outcomes for health impacts due to extreme heat

### Summary

- Climate change is ongoing.
- Short-term predictions of extremely hot days in June-Sept. 2018-2020 are already substantially higher than those in 2001-2010. New Taipei & Kaohsiung are the most impacted area for attributable mortality
- The established statistical model for short-term predictions had well performance.
- Lots uncertainties exist for future climate change projection

Integration of various sources of data are required for future projection.

### Thank you for your attention!